論文の概要: Explainable Machine Learning System for Predicting Chronic Kidney Disease in High-Risk Cardiovascular Patients
- arxiv url: http://arxiv.org/abs/2404.11148v1
- Date: Wed, 17 Apr 2024 07:59:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:55:00.593602
- Title: Explainable Machine Learning System for Predicting Chronic Kidney Disease in High-Risk Cardiovascular Patients
- Title(参考訳): 高リスク心血管患者における慢性腎臓病予測のための説明可能な機械学習システム
- Authors: Nantika Nguycharoen,
- Abstract要約: 本研究は,循環器疾患患者の慢性腎臓病(CKD)を予測できる機械学習システムを開発した。
ランダムフォレストモデルは88.2%の感度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the global population ages, the incidence of Chronic Kidney Disease (CKD) is rising. CKD often remains asymptomatic until advanced stages, which significantly burdens both the healthcare system and patient quality of life. This research developed an explainable machine learning system for predicting CKD in patients with cardiovascular risks, utilizing medical history and laboratory data. The Random Forest model achieved the highest sensitivity of 88.2%. The study introduces a comprehensive explainability framework that extends beyond traditional feature importance methods, incorporating global and local interpretations, bias inspection, biomedical relevance, and safety assessments. Key predictive features identified in global interpretation were the use of diabetic and ACEI/ARB medications, and initial eGFR values. Local interpretation provided model insights through counterfactual explanations, which aligned with other system parts. After conducting a bias inspection, it was found that the initial eGFR values and CKD predictions exhibited some bias, but no significant gender bias was identified. The model's logic, extracted by scoped rules, was confirmed to align with existing medical literature. The safety assessment tested potentially dangerous cases and confirmed that the model behaved safely. This system enhances the explainability, reliability, and accountability of the model, promoting its potential integration into healthcare settings and compliance with upcoming regulatory standards, and showing promise for broader applications in healthcare machine learning.
- Abstract(参考訳): 世界人口の高齢化に伴い、慢性腎臓病(CKD)の発生が増加している。
CKDは、先進的な段階まで無症状であり、医療システムと患者の生活の質の両方を著しく負担する。
本研究は, 循環器疾患患者のCKDを予測するための機械学習システムを開発した。
ランダムフォレストモデルは88.2%の感度を達成した。
本研究は, グローバルおよびローカルな解釈, バイアス検査, バイオメディカル関連性, 安全性評価を取り入れた, 従来の特徴重要度手法を超えて, 包括的説明可能性フレームワークを導入する。
世界的解釈で確認された主な予測的特徴は、糖尿病およびACEI/ARB薬の使用、および初期eGFR値であった。
局所的な解釈は、他のシステム部分と一致した反事実的説明を通じてモデル洞察を提供した。
偏見検査を行った結果,初期eGFR値とCKD予測には何らかの偏見が認められたが,有意な性差は認められなかった。
このモデルの論理は,既存の医学文献と一致することが確認された。
安全性評価では、潜在的に危険なケースを検査し、モデルが安全に動作していることを確認した。
このシステムは、モデルの説明可能性、信頼性、説明責任を高め、医療設定への潜在的な統合と今後の規制標準への準拠を促進し、医療機械学習における幅広いアプリケーションへの期待を示す。
関連論文リスト
- Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
本稿では,臨床データを用いた心疾患のリスク予測における機械学習モデルの役割,関連性,効率性を理解し,評価し,分析する。
Support Vector Machine (SVM) は91.51%の精度を示し、予測能力の観点から評価されたモデル間にその優位性を確認している。
論文 参考訳(メタデータ) (2024-10-16T22:32:19Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - Explainable AI for Malnutrition Risk Prediction from m-Health and
Clinical Data [3.093890460224435]
異種m-healthデータに基づく早期かつ説明可能な栄養失調リスク検出のための新しいAIフレームワークを提案する。
対象非依存および個人化予測を含む広範囲なモデル評価を行った。
また,グローバルモデル記述を抽出するベンチマークXAI法についても検討した。
論文 参考訳(メタデータ) (2023-05-31T08:07:35Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
我々は、機械学習モデルを構築するための汎用的で説明可能なフレームワークであるCOVID-Net Biochemを紹介する。
この枠組みを用いて、新型コロナウイルス患者の生存率と、入院中に急性腎不全を発症する可能性を予測する。
論文 参考訳(メタデータ) (2022-04-24T07:38:37Z) - Understanding Heart-Failure Patients EHR Clinical Features via SHAP
Interpretation of Tree-Based Machine Learning Model Predictions [8.444557621643568]
心不全(Heart failure, HF)は、死因の一つ。
機械学習モデル、具体的にはXGBoostモデルがEHRに基づいて患者ステージを正確に予測できるかどうかを検討した。
以上の結果から,EHRの構造化データに基づいて,患者の退院率(EF)を適度な精度で予測できることが示唆された。
論文 参考訳(メタデータ) (2021-03-20T22:17:05Z) - An explainable Transformer-based deep learning model for the prediction
of incident heart failure [22.513476932615845]
100,071例の心不全予後予測のための新しいTransformerディープラーニングモデルを開発した。
このモデルは、レシーバーオペレーター曲線で 0.93 と 0.93 の領域、精度-リコール曲線で 0.69 と 0.70 の領域を達成した。
文脈化医療情報の重要さは感度分析において明らかにされた。
論文 参考訳(メタデータ) (2021-01-27T12:45:15Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - CovidCare: Transferring Knowledge from Existing EMR to Emerging Epidemic
for Interpretable Prognosis [20.701122594508675]
新興感染症患者の予後を高めるための深層学習型アプローチであるCovidCareを提案する。
CovidCareは、トランスファーラーニングを通じて、大量の既存のEMRデータに基づいて、新型コロナウイルス関連の医療機能を組み込むことを学ぶ。
実際のCOVID-19データセット上で、患者に対する滞在予測実験の期間を延ばす。
論文 参考訳(メタデータ) (2020-07-17T09:20:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。