論文の概要: Deconstructing Human-AI Collaboration: Agency, Interaction, and Adaptation
- arxiv url: http://arxiv.org/abs/2404.12056v1
- Date: Thu, 18 Apr 2024 10:12:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 19:21:31.461352
- Title: Deconstructing Human-AI Collaboration: Agency, Interaction, and Adaptation
- Title(参考訳): 人間とAIの協力関係の再構築--機関・相互作用・適応
- Authors: Steffen Holter, Mennatallah El-Assady,
- Abstract要約: 我々は,人間-AIシステムの解析と記述を行うための,新しい統合された次元セットを提案する。
我々の概念モデルは、エージェンシー、インタラクション、適応の3つのハイレベルな側面を中心としています。
- 参考スコア(独自算出の注目度): 9.36651659099834
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As full AI-based automation remains out of reach in most real-world applications, the focus has instead shifted to leveraging the strengths of both human and AI agents, creating effective collaborative systems. The rapid advances in this area have yielded increasingly more complex systems and frameworks, while the nuance of their characterization has gotten more vague. Similarly, the existing conceptual models no longer capture the elaborate processes of these systems nor describe the entire scope of their collaboration paradigms. In this paper, we propose a new unified set of dimensions through which to analyze and describe human-AI systems. Our conceptual model is centered around three high-level aspects - agency, interaction, and adaptation - and is developed through a multi-step process. Firstly, an initial design space is proposed by surveying the literature and consolidating existing definitions and conceptual frameworks. Secondly, this model is iteratively refined and validated by conducting semi-structured interviews with nine researchers in this field. Lastly, to illustrate the applicability of our design space, we utilize it to provide a structured description of selected human-AI systems.
- Abstract(参考訳): 完全なAIベースの自動化は、ほとんどの現実世界のアプリケーションでは到達できないため、人間のエージェントとAIエージェントの両方の強みを活用し、効果的な協調システムを構築することに焦点が移っている。
この領域の急速な進歩により、より複雑なシステムやフレームワークが生まれ、その特徴のニュアンスはさらに曖昧になった。
同様に、既存の概念モデルは、これらのシステムの精巧なプロセスを捉えたり、コラボレーションパラダイムの全範囲を記述したりしない。
本稿では,人間-AIシステムの解析と記述を行うため,新しい次元の統一化を提案する。
我々の概念モデルは,エージェント,インタラクション,適応の3つのハイレベルな側面を中心に,多段階プロセスを通じて開発されている。
まず、文献を調査し、既存の定義と概念的枠組みを統合することで、初期設計空間を提案する。
第2に、このモデルは、この分野の9人の研究者との半構造化インタビューを行うことにより、反復的に洗練され、検証される。
最後に、設計空間の適用性を説明するために、選択した人間-AIシステムの構造化された記述を提供する。
関連論文リスト
- Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization [0.6629765271909505]
本稿では,言語モデルにおける弱強一般化によるモデルアライメントの新たなアプローチを提案する。
このファシリテーションに基づくアプローチは、モデルの性能を高めるだけでなく、モデルアライメントの性質に関する洞察も提供することを示唆している。
論文 参考訳(メタデータ) (2024-09-11T15:16:25Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - Unpacking Human-AI interactions: From interaction primitives to a design
space [6.778055454461106]
これらのプリミティブを相互作用パターンの集合にどのように組み合わせるかを示す。
この背景にある動機は、既存のプラクティスのコンパクトな一般化を提供することである。
我々は,人間-AIインタラクションの設計空間に対して,このアプローチをどのように利用できるかについて議論する。
論文 参考訳(メタデータ) (2024-01-10T12:27:18Z) - Conceptual Framework for Autonomous Cognitive Entities [0.9285295512807729]
本稿では,認知アーキテクチャの新しいフレームワークである自律認知エンティティモデルを紹介する。
このモデルは、大規模言語モデル(LLM)やマルチモーダル生成モデル(MMM)など、最新の生成AI技術の能力を活用するように設計されている。
ACEフレームワークには、障害の処理とアクションの適応のためのメカニズムも組み込まれているため、自律エージェントの堅牢性と柔軟性が向上する。
論文 参考訳(メタデータ) (2023-10-03T15:53:55Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。