論文の概要: Latent Schr{ö}dinger Bridge Diffusion Model for Generative Learning
- arxiv url: http://arxiv.org/abs/2404.13309v3
- Date: Sun, 22 Dec 2024 12:02:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:32.468782
- Title: Latent Schr{ö}dinger Bridge Diffusion Model for Generative Learning
- Title(参考訳): 生成学習のための潜在Schr{ö}dinger Bridge拡散モデル
- Authors: Yuling Jiao, Lican Kang, Huazhen Lin, Jin Liu, Heng Zuo,
- Abstract要約: 潜在空間におけるシュリンガー橋拡散モデルを用いた新しい生成学習手法を提案する。
我々は、Schr"odingerブリッジフレームワークを用いて、潜伏空間内の拡散モデルを開発する。
- 参考スコア(独自算出の注目度): 7.13080924844185
- License:
- Abstract: This paper aims to conduct a comprehensive theoretical analysis of current diffusion models. We introduce a novel generative learning methodology utilizing the Schr{\"o}dinger bridge diffusion model in latent space as the framework for theoretical exploration in this domain. Our approach commences with the pre-training of an encoder-decoder architecture using data originating from a distribution that may diverge from the target distribution, thus facilitating the accommodation of a large sample size through the utilization of pre-existing large-scale models. Subsequently, we develop a diffusion model within the latent space utilizing the Schr{\"o}dinger bridge framework. Our theoretical analysis encompasses the establishment of end-to-end error analysis for learning distributions via the latent Schr{\"o}dinger bridge diffusion model. Specifically, we control the second-order Wasserstein distance between the generated distribution and the target distribution. Furthermore, our obtained convergence rates effectively mitigate the curse of dimensionality, offering robust theoretical support for prevailing diffusion models.
- Abstract(参考訳): 本稿では,現在の拡散モデルの包括的理論的解析を行うことを目的とする。
本稿では、この領域における理論的探索の枠組みとして、潜在空間におけるSchr{\"o}dinger Bridge拡散モデルを用いた新しい生成学習手法を提案する。
提案手法は,対象分布から逸脱する可能性のある分布から派生したデータを用いたエンコーダ・デコーダアーキテクチャの事前学習から始まり,既存の大規模モデルを活用することで,大規模なサンプルサイズの収容が容易になる。
次に、Schr{\「o}dinger Bridge framework」を用いた潜伏空間内の拡散モデルを構築した。
我々の理論的解析は、潜在Schr{\"o}dinger橋拡散モデルによる学習分布のエンドツーエンド誤差解析の確立を含む。
具体的には、生成した分布と対象分布の間の2階ワッサーシュタイン距離を制御する。
さらに, 得られた収束速度は次元の呪いを効果的に軽減し, 普及する拡散モデルに対する堅牢な理論的支援を提供する。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
論文 参考訳(メタデータ) (2024-03-18T17:08:24Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - An optimal control perspective on diffusion-based generative modeling [9.806130366152194]
微分方程式(SDE)に基づく最適制御と生成モデルとの接続を確立する。
特にハミルトン・ヤコビ・ベルマン方程式を導出し、基礎となるSDE限界の対数密度の進化を制御している。
非正規化密度から抽出する新しい拡散法を開発した。
論文 参考訳(メタデータ) (2022-11-02T17:59:09Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
関係領域で独立に訓練された2つの拡散モデルから共通潜時空間が現れることを示す。
テキスト・画像拡散モデルにCycleDiffusionを適用することで、大規模なテキスト・画像拡散モデルがゼロショット画像・画像拡散エディタとして使用できることを示す。
論文 参考訳(メタデータ) (2022-10-11T15:53:52Z) - Let us Build Bridges: Understanding and Extending Diffusion Generative
Models [19.517597928769042]
拡散に基づく生成モデルは、最近、有望な結果を得たが、多くのオープンな疑問を提起している。
この研究は、理論的な理解を深めるために、全体的なフレームワークを再検討しようと試みている。
1)拡散生成モデルを学習するための最初の理論的誤り解析,2)異なる離散および制約された領域からのデータを学ぶための単純で統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-31T08:58:10Z) - Convergence of denoising diffusion models under the manifold hypothesis [3.096615629099617]
デノイング拡散モデル(Denoising diffusion model)は、画像および音声合成における最先端性能を示す最近の生成モデルのクラスである。
本稿では、拡散モデルに対するより一般的な設定での最初の収束結果を提供する。
論文 参考訳(メタデータ) (2022-08-10T12:50:47Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Deep Generative Learning via Schr\"{o}dinger Bridge [14.138796631423954]
エントロピーにより生成モデルをSchr"odinger Bridgeで学習する。
Schr"odinger Bridge による生成モデルは最先端の GAN に匹敵することを示す。
論文 参考訳(メタデータ) (2021-06-19T03:35:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。