論文の概要: React-OT: Optimal Transport for Generating Transition State in Chemical Reactions
- arxiv url: http://arxiv.org/abs/2404.13430v2
- Date: Tue, 15 Oct 2024 22:05:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 17:35:37.280283
- Title: React-OT: Optimal Transport for Generating Transition State in Chemical Reactions
- Title(参考訳): React-OT:化学反応における遷移状態生成のための最適輸送
- Authors: Chenru Duan, Guan-Horng Liu, Yuanqi Du, Tianrong Chen, Qiyuan Zhao, Haojun Jia, Carla P. Gomes, Evangelos A. Theodorou, Heather J. Kulik,
- Abstract要約: 反応物や生成物から一意な遷移状態構造を生成するための最適な輸送手法であるReact-OTを開発した。
Re React-OTは、0.053AAの中央構造根平均平方偏差(RMSD)と1.06 kcal/molの中央障壁誤差を持つ高度精度の高いTS構造を生成する。
- 参考スコア(独自算出の注目度): 45.99250641377074
- License:
- Abstract: Transition states (TSs) are transient structures that are key in understanding reaction mechanisms and designing catalysts but challenging to be captured in experiments. Alternatively, many optimization algorithms have been developed to search for TSs computationally. Yet the cost of these algorithms driven by quantum chemistry methods (usually density functional theory) is still high, posing challenges for their applications in building large reaction networks for reaction exploration. Here we developed React-OT, an optimal transport approach for generating unique TS structures from reactants and products. React-OT generates highly accurate TS structures with a median structural root mean square deviation (RMSD) of 0.053{\AA} and median barrier height error of 1.06 kcal/mol requiring only 0.4 second per reaction. The RMSD and barrier height error is further improved by roughly 25\% through pretraining React-OT on a large reaction dataset obtained with a lower level of theory, GFN2-xTB. We envision that the remarkable accuracy and rapid inference of React-OT will be highly useful when integrated with the current high-throughput TS search workflow. This integration will facilitate the exploration of chemical reactions with unknown mechanisms.
- Abstract(参考訳): 遷移状態 (TSs) は反応機構や設計触媒を理解する上で重要な過渡構造であるが、実験で捉えることは困難である。
あるいは、TSを計算的に検索するために多くの最適化アルゴリズムが開発されている。
しかし、量子化学法(通常は密度汎関数理論)によって駆動されるこれらのアルゴリズムのコストは依然として高く、反応探索のための大規模な反応ネットワークの構築においてその応用に課題を提起している。
ここでは反応物や生成物から独自のTS構造を生成するための最適な輸送手法であるReact-OTを開発した。
React-OT は 0.053{\AA} の中央構造根平均平方偏差 (RMSD) と1.06 kcal/mol の障壁高さ誤差を持つ高度に正確なTS 構造を生成する。
理論レベルが低いGFN2-xTBの反応データセット上で、React-OTを前訓練することにより、RMSDとバリア高さ誤差を約25%改善する。
我々は、現在の高スループットTS検索ワークフローと統合した場合、React-OTの顕著な精度と迅速な推論が、非常に有用であることを期待している。
この統合は未知の機構を持つ化学反応の探索を促進する。
関連論文リスト
- Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation [50.639325453203504]
MM-RCRは、化学反応レコメンデーション(RCR)のためのSMILES、反応グラフ、テキストコーパスから統一的な反応表現を学習するテキスト拡張マルチモーダルLLMである。
この結果から,MM-RCRは2つのオープンベンチマークデータセット上で最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-07-21T12:27:26Z) - ReactAIvate: A Deep Learning Approach to Predicting Reaction Mechanisms and Unmasking Reactivity Hotspots [4.362338454684645]
我々は,反応ステップ分類の精度を96%とほぼ均一に達成した,解釈可能な注意に基づくGNNを開発した。
我々のモデルは、配布外クラスからでも、キー原子を十分に識別します。
この一般性は、モジュラーな方法で新しい反応型を包含することができるため、新しい分子の反応性を理解するための専門家にとって価値がある。
論文 参考訳(メタデータ) (2024-07-14T05:53:18Z) - ReactXT: Understanding Molecular "Reaction-ship" via Reaction-Contextualized Molecule-Text Pretraining [76.51346919370005]
反応テキストモデリングのためのReactXTと実験手順予測のためのOpenExpを提案する。
ReactXTは、インプットコンテキストの3つのタイプをインクリメンタルに事前トレーニングする。
私たちのコードはhttps://github.com/syr-cn/ReactXT.comで公開されています。
論文 参考訳(メタデータ) (2024-05-23T06:55:59Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
RetroWISEは,実データから推定されるベースモデルを用いて,シリコン内反応の生成と増大を行うフレームワークである。
3つのベンチマークデータセットで、RetroWISEは最先端モデルに対して最高の全体的なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-01-31T07:40:37Z) - Accurate transition state generation with an object-aware equivariant
elementary reaction diffusion model [9.878043289026731]
遷移状態 (TS) 探索は反応機構の解明と反応ネットワークの探索に重要である。
そこで本研究では, 基本反応における構造の集合を生成するためのすべての物理対称性と制約を満たす, オブジェクト対応SE(3)同変拡散モデルを開発する。
反応物と生成物が与えられたこのモデルは、量子化学に基づく最適化を行うのに必要な時間ではなく、数秒でTS構造を生成する。
論文 参考訳(メタデータ) (2023-04-12T22:21:36Z) - Multi-level Protocol for Mechanistic Reaction Studies Using Semi-local
Fitted Potential Energy Surfaces [0.0]
本稿では化学反応機構の定期的な理論的研究のためのマルチスケールプロトコルを提案する。
この手法の性能の重要な側面は、そのマルチスケールな性質であり、これは計算労力を節約するだけでなく、意味のある情報を抽出することを可能にする。
論文 参考訳(メタデータ) (2023-04-03T12:55:29Z) - Self-Improved Retrosynthetic Planning [66.5397931294144]
再合成計画(Retrosynthetic Planning)は、標的分子を合成する反応の経路を見つけるための化学の基本的な問題である。
最近の検索アルゴリズムは、ディープニューラルネットワーク(DNN)を用いてこの問題を解決するための有望な結果を示している。
そこで本研究では,DNNを直接訓練し,望ましい特性を持つ反応経路を生成するためのエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:03:57Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
そこで我々は, テンプレートフリーな自動逆合成拡張アルゴリズムを考案した。
我々の方法はレトロシンセシスを2段階に分解する。
最先端のベースラインよりも優れている一方で、我々のモデルは化学的に合理的な解釈も提供する。
論文 参考訳(メタデータ) (2020-11-04T04:35:34Z) - Towards the design of chemical reactions: Machine learning barriers of
competing mechanisms in reactant space [0.0]
本稿では,アクティベーションエネルギーと遷移状態ジオメトリを迅速かつ正確に推論するリアクション・ツー・バリア(R2B)機械学習モデルを提案する。
R2Bは、トレーニングセットが大きくなるにつれて精度を向上し、反応体の入力のみの分子グラフ情報を必要とする。
有機合成,E2およびSN2に関連する2つの競合するテキストブック反応に対するR2Bの適用性を示す数値的な証拠を提供する。
論文 参考訳(メタデータ) (2020-09-28T15:50:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。