論文の概要: Classical Commitments to Quantum States
- arxiv url: http://arxiv.org/abs/2404.14438v1
- Date: Fri, 19 Apr 2024 22:31:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 18:17:13.723691
- Title: Classical Commitments to Quantum States
- Title(参考訳): 量子状態への古典的コミットメント
- Authors: Sam Gunn, Yael Tauman Kalai, Anand Natarajan, Agi Villanyi,
- Abstract要約: 量子状態に対する古典的なコミットメントスキームの概念を定義する。
量子証明器は量子状態に対する古典的なコミットメントを計算し、後に各量子ビットを標準またはアダマール基底で開くことができる。
- 参考スコア(独自算出の注目度): 5.6739502570965765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We define the notion of a classical commitment scheme to quantum states, which allows a quantum prover to compute a classical commitment to a quantum state, and later open each qubit of the state in either the standard or the Hadamard basis. Our notion is a strengthening of the measurement protocol from Mahadev (STOC 2018). We construct such a commitment scheme from the post-quantum Learning With Errors (LWE) assumption, and more generally from any noisy trapdoor claw-free function family that has the distributional strong adaptive hardcore bit property (a property that we define in this work). Our scheme is succinct in the sense that the running time of the verifier in the commitment phase depends only on the security parameter (independent of the size of the committed state), and its running time in the opening phase grows only with the number of qubits that are being opened (and the security parameter). As a corollary we obtain a classical succinct argument system for QMA under the post-quantum LWE assumption. Previously, this was only known assuming post-quantum secure indistinguishability obfuscation. As an additional corollary we obtain a generic way of converting any X/Z quantum PCP into a succinct argument system under the quantum hardness of LWE.
- Abstract(参考訳): 量子状態に対する古典的なコミットメントスキームの概念を定義し、量子証明者は量子状態に対する古典的なコミットメントを計算し、後に標準またはアダマール基底のそれぞれの量子ビットを開くことができる。
我々の考え方は、Mahadev (STOC 2018) による測定プロトコルの強化である。
このようなコミットメントスキームは,LWE(Learning With Errors)の仮定から構築され,より一般的には,分散性の高い適応ハードコアビット特性(本研究で定義した特性)を持つ,ノイズの多いトラップドアの爪なし関数群から構成される。
コミットフェーズにおける検証器の実行時間は,セキュリティパラメータ(コミット状態のサイズに依存しない)のみに依存し,オープンフェーズにおける実行時間は,オープン中のキュービット数(およびセキュリティパラメータ)にのみ依存するという意味で,簡潔である。
コーナリーとして、量子後LWE仮定の下でQMAの古典的簡潔な論証システムを得る。
以前は、これはクォータム後の安全な識別不能な難読化としてのみ知られていた。
さらに、任意のX/Z量子PCPをLWEの量子硬度の下で簡潔な引数システムに変換する一般的な方法を得る。
関連論文リスト
- Ground or Excited State: a State-Specific Variational Quantum
Eigensolver for Them All [0.0]
変分量子固有解法 (VQE) は、量子デバイスにおける分子エネルギーを決定できるゲーミングプラットフォームを提供する。
我々は,同じ足場における基底状態と励起状態を扱う統一VQEフレームワークを提案する。
最適化の各ステップにおける参照の純度を維持する完全対称スピンスカラーユニタリの概念を導入する。
論文 参考訳(メタデータ) (2023-08-21T13:39:58Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Commitments to Quantum States [11.217084610985674]
コミットフェーズの後、コミットした状態が送信者の視点から隠されている場合、量子メッセージへのコミットが結合される。
量子状態コミットメント(QSC)の隠蔽は、古典的なメッセージに対するコミットメントスキームによってもたらされることを示す。
量子状態へのコミットは多くの新しい暗号可能性への扉を開く。
論文 参考訳(メタデータ) (2022-10-11T04:34:36Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - Quantum Speed Limit under Brachistochrone Evolution [0.0]
本稿では,クローズドかつオープンな量子システムに対して,量子速度限界(QSL)を導出する幾何学的手法を提案する。
与えられた初期状態から最終状態までのQSLは、システム全体のダイナミクスだけでなく、臨界パラメータの個々のダイナミクスによっても決定されることを示す。
論文 参考訳(メタデータ) (2022-07-30T14:30:01Z) - Succinct Classical Verification of Quantum Computation [30.91621630752802]
量子計算のための古典的簡潔な対話的引数(BQP)を構築する。
我々のプロトコルは、識別不能難読化(iO)と学習エラー(LWE)の事後セキュリティを前提として安全である。
論文 参考訳(メタデータ) (2022-06-29T22:19:12Z) - Commitment capacity of classical-quantum channels [70.51146080031752]
古典的量子チャネルに対するコミットメント能力の様々な概念を定義する。
条件エントロピーの観点から上界と下界のマッチングを証明した。
論文 参考訳(メタデータ) (2022-01-17T10:41:50Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
本稿では,現実的な雑音に依拠する新しい量子通信方式を提案する。
性能分析の結果,提案手法は競争力のあるQBER, 利得, 利得を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-22T13:06:12Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
古典的アリス(Alice)と量子的ボブ(Quantum Bob)が古典的なチャネルを通してのみ通信できるような設定を考える。
悪質な量子逆数の場合,ブラックボックスシミュレーションを用いた2次元量子関数を実現することは,一般に不可能であることを示す。
我々は、QMA関係Rの古典的量子知識(PoQK)プロトコルを入力として、古典的当事者によって検証可能なRのゼロ知識PoQKを出力するコンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-15T17:55:31Z) - From a quantum theory to a classical one [117.44028458220427]
量子対古典的交叉を記述するための形式的アプローチを提示し議論する。
この手法は、1982年にL. Yaffeによって、大きな$N$の量子場理論に取り組むために導入された。
論文 参考訳(メタデータ) (2020-04-01T09:16:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。