Digital Twins for forecasting and decision optimisation with machine learning: applications in wastewater treatment
- URL: http://arxiv.org/abs/2404.14635v1
- Date: Tue, 23 Apr 2024 00:18:20 GMT
- Title: Digital Twins for forecasting and decision optimisation with machine learning: applications in wastewater treatment
- Authors: Matthew Colwell, Mahdi Abolghasemi,
- Abstract summary: Prediction and optimisation are techniques that have found many applications in solving real-world problems.
We review a digital twin that was developed and applied in wastewater treatment in Urban Utility to improve their operational efficiency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction and optimisation are two widely used techniques that have found many applications in solving real-world problems. While prediction is concerned with estimating the unknown future values of a variable, optimisation is concerned with optimising the decision given all the available data. These methods are used together to solve problems for sequential decision-making where often we need to predict the future values of variables and then use them for determining the optimal decisions. This paradigm is known as forecast and optimise and has numerous applications, e.g., forecast demand for a product and then optimise inventory, forecast energy demand and schedule generations, forecast demand for a service and schedule staff, to name a few. In this extended abstract, we review a digital twin that was developed and applied in wastewater treatment in Urban Utility to improve their operational efficiency. While the current study is tailored to the case study problem, the underlying principles can be used to solve similar problems in other domains.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Differentiation of Multi-objective Data-driven Decision Pipeline [34.577809430781144]
Real-world scenarios frequently involve multi-objective data-driven optimization problems.
Traditional two-stage methods apply a machine learning model to estimate problem coefficients, followed by invoking a solver to tackle the predicted optimization problem.
Recent efforts have focused on end-to-end training of predictive models that use decision loss derived from the downstream optimization problem.
arXiv Detail & Related papers (2024-06-02T15:42:03Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
This paper presents the findings of the IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling," held in 2021.
We present a comparison and evaluation of the seven highest-ranked solutions in the competition.
The winning method predicted different scenarios and optimized over all scenarios using a sample average approximation method.
arXiv Detail & Related papers (2022-12-21T02:34:12Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Careful! Training Relevance is Real [0.7742297876120561]
We propose constraints designed to enforce training relevance.
We show through a collection of experimental results that adding the suggested constraints significantly improves the quality of solutions.
arXiv Detail & Related papers (2022-01-12T11:54:31Z) - The Perils of Learning Before Optimizing [16.97597806975415]
We show how prediction models can be learned end-to-end by differentiating through the optimization task.
We show that the performance gap between a two-stage and end-to-end approach is closely related to the emphprice of correlation concept in optimization.
arXiv Detail & Related papers (2021-06-18T20:43:47Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Interior Point Solving for LP-based prediction+optimisation [14.028706088791473]
We investigate the use of the more principled logarithmic barrier term, as widely used in interior point solvers for linear programming.
Our approach performs as good as if not better than the state-of-the-art QPTL (Quadratic Programming task loss) formulation of Wilder et al. and SPO approach of Elmachtoub and Grigas.
arXiv Detail & Related papers (2020-10-26T23:05:21Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
We present a policy gradient algorithm that maximizes a forecast of future performance.
We show that our algorithm, called Prognosticator, is more robust to non-stationarity than two online adaptation techniques.
arXiv Detail & Related papers (2020-05-17T03:41:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.