論文の概要: Elevating Spectral GNNs through Enhanced Band-pass Filter Approximation
- arxiv url: http://arxiv.org/abs/2404.15354v1
- Date: Mon, 15 Apr 2024 11:35:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-28 10:46:58.079346
- Title: Elevating Spectral GNNs through Enhanced Band-pass Filter Approximation
- Title(参考訳): 帯域通過フィルタ近似によるスペクトルGNNの高次化
- Authors: Guoming Li, Jian Yang, Shangsong Liang, Dongsheng Luo,
- Abstract要約: まず,バンドパスグラフフィルタの近似性が向上したポリGNNが,グラフ学習タスクにおいて優れた性能を発揮することを示す。
この知見は、既存のポリGNNの重要な問題、すなわち、これらのポリGNNはバンドパスグラフフィルタの近似において自明な性能を達成する。
この問題に対処するために,バンドパスグラフフィルタの近似における先行的な性能を実現する,TrigoNetという新しいポリGNNを提案する。
- 参考スコア(独自算出の注目度): 26.79625547648669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectral Graph Neural Networks (GNNs) have attracted great attention due to their capacity to capture patterns in the frequency domains with essential graph filters. Polynomial-based ones (namely poly-GNNs), which approximately construct graph filters with conventional or rational polynomials, are routinely adopted in practice for their substantial performances on graph learning tasks. However, previous poly-GNNs aim at achieving overall lower approximation error on different types of filters, e.g., low-pass and high-pass, but ignore a key question: \textit{which type of filter warrants greater attention for poly-GNNs?} In this paper, we first show that poly-GNN with a better approximation for band-pass graph filters performs better on graph learning tasks. This insight further sheds light on critical issues of existing poly-GNNs, i.e., those poly-GNNs achieve trivial performance in approximating band-pass graph filters, hindering the great potential of poly-GNNs. To tackle the issues, we propose a novel poly-GNN named TrigoNet. TrigoNet constructs different graph filters with novel trigonometric polynomial, and achieves leading performance in approximating band-pass graph filters against other polynomials. By applying Taylor expansion and deserting nonlinearity, TrigoNet achieves noticeable efficiency among baselines. Extensive experiments show the advantages of TrigoNet in both accuracy performances and efficiency.
- Abstract(参考訳): スペクトルグラフニューラルネットワーク(GNN)は,本質的なグラフフィルタを用いて周波数領域のパターンをキャプチャする能力によって注目されている。
従来の多項式や有理多項式を含むグラフフィルタを概ね構成するポリ多項式ベース(ポリGNN)は、グラフ学習タスクにおける実質的なパフォーマンスのために、実際に日常的に採用されている。
しかし、従来のポリGNNは、様々な種類のフィルタ(例えば、低パス、ハイパス)で全体的な低い近似誤差を達成することを目的としていたが、重要な疑問を無視している。
そこで,本論文ではまず,帯域通過グラフフィルタの近似性を向上したポリGNNが,グラフ学習タスクにおいて優れた性能を発揮することを示す。
この知見は、既存のポリGNNの重要な問題、すなわち、これらのポリGNNは、バンドパスグラフフィルタの近似において自明な性能を達成し、ポリGNNの大きな可能性を妨げている。
この問題に対処するため,TrigoNetという新しいポリGNNを提案する。
TrigoNetは、新しい三角関数多項式を持つ異なるグラフフィルタを構築し、他の多項式に対する帯域通過グラフフィルタの近似において先行的な性能を達成する。
Taylorの拡張と非線型性の適用により、TrigoNetはベースライン間で顕著な効率を達成する。
大規模な実験は、精度と効率の両面でTrigoNetの利点を示している。
関連論文リスト
- Generalized Learning of Coefficients in Spectral Graph Convolutional Networks [5.5711773076846365]
スペクトルグラフ畳み込みネットワーク(GCN)は、グラフ機械学習アプリケーションで人気を集めている。
G-Arnoldi-GCNは、適切な関数が採用された場合、常に最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-09-07T12:53:44Z) - GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet)は、任意のグラフスペクトルフィルタを設計するためのシンプルで効果的なスキームを提供する理論的なサポートを持つ、新しいグラフニューラルネットワークである。
我々の知る限り、我々の研究はグラフGNNスペクトルフィルタの設計にSSMを使った最初のものである。
9つの公開ベンチマークでの大規模な実験により、GrassNetは現実世界のグラフモデリングタスクにおいて優れたパフォーマンスを達成することが明らかになった。
論文 参考訳(メタデータ) (2024-08-16T07:33:58Z) - Node-wise Filtering in Graph Neural Networks: A Mixture of Experts Approach [58.8524608686851]
グラフニューラルネットワーク(GNN)は、多様なグラフ構造パターンをまたいだノード分類タスクに非常に効果的であることが証明されている。
伝統的に、GNNは均一なグローバルフィルタ(通常、ホモフィルグラフのローパスフィルタとヘテロフィルグラフのハイパスフィルタ)を用いる。
我々は,異なるノードに対する適切なフィルタを適応的に選択するために,専門家の混在を利用した新しいGNNフレームワークNode-MoEを紹介する。
論文 参考訳(メタデータ) (2024-06-05T17:12:38Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
比スペクトルグラフネットワーク(S$2$GNN)を提案する。
S$2$GNNは空間的およびスペクトル的にパラメータ化されたグラフフィルタを組み合わせる。
S$2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
論文 参考訳(メタデータ) (2024-05-29T14:28:08Z) - Infinite-Horizon Graph Filters: Leveraging Power Series to Enhance Sparse Information Aggregation [21.24445817935125]
本稿では,受動場を増大させるため,電力系列グラフフィルタを用いてノード分類を強化する新しいグラフパワーフィルタニューラルネットワークを提案する。
我々のGPFNは、任意のパワーシリーズを統合し、長距離依存関係をキャプチャできる一般的なフレームワークです。
論文 参考訳(メタデータ) (2024-01-18T12:45:46Z) - Transferability Properties of Graph Neural Networks [125.71771240180654]
グラフニューラルネットワーク(GNN)は、中規模グラフでサポートされているデータから表現を学ぶのに成功している。
適度な大きさのグラフ上でGNNを訓練し、それらを大規模グラフに転送する問題について検討する。
その結果, (i) グラフサイズに応じて転送誤差が減少し, (ii) グラフフィルタは非線型性の散乱挙動によってGNNにおいて緩和されるような転送可能性-識別可能性トレードオフを有することがわかった。
論文 参考訳(メタデータ) (2021-12-09T00:08:09Z) - A Robust Alternative for Graph Convolutional Neural Networks via Graph
Neighborhood Filters [84.20468404544047]
グラフシフト演算子のパワーを$k$ホップ近傍行列に置き換えるグラフフィルタ群(NGF)を提案する。
NGFは、従来のGFの数値問題を緩和し、より深いGCNNの設計を可能にし、グラフのトポロジにおけるエラーに対する堅牢性を高めるのに役立つ。
論文 参考訳(メタデータ) (2021-10-02T17:05:27Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。