論文の概要: Benchmarking a heuristic Floquet adiabatic algorithm for the Max-Cut problem
- arxiv url: http://arxiv.org/abs/2404.16001v1
- Date: Wed, 24 Apr 2024 17:29:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 18:31:49.114851
- Title: Benchmarking a heuristic Floquet adiabatic algorithm for the Max-Cut problem
- Title(参考訳): Max-Cut問題に対するヒューリスティックフロケット断熱アルゴリズムのベンチマーク
- Authors: Etienne Granet, Henrik Dreyer,
- Abstract要約: 断熱的進化は、固定された有限トロッターステップで行うことができることを示す。
行列積-状態シミュレーションを用いてマックス・カッツ問題を最適に解くことのできる数値的な証拠を与える。
計算結果を外挿すると、量子コンピュータが古典的正確な解法や近似解法と競合するために必要なリソースを推定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: According to the adiabatic theorem of quantum mechanics, a system initially in the ground state of a Hamiltonian remains in the ground state if one slowly changes the Hamiltonian. This can be used in principle to solve hard problems on quantum computers. Generically, however, implementation of this Hamiltonian dynamics on digital quantum computers requires scaling Trotter step size with system size and simulation time, which incurs a large gate count. In this work, we argue that for classical optimization problems, the adiabatic evolution can be performed with a fixed, finite Trotter step. This "Floquet adiabatic evolution" reduces by several orders of magnitude the gate count compared to the usual, continuous-time adiabatic evolution. We give numerical evidence using matrix-product-state simulations that it can optimally solve the Max-Cut problem on $3$-regular graphs in a large number of instances, with surprisingly low runtime, even with bond dimensions as low as $D=2$. Extrapolating our numerical results, we estimate the resources needed for a quantum computer to compete with classical exact or approximate solvers for this specific problem.
- Abstract(参考訳): 量子力学の断熱定理によれば、ハミルトニアンの基底状態にある系は、徐々にハミルトニアンが変化すると基底状態に残る。
これは原理的に量子コンピュータの難しい問題を解くのに使うことができる。
しかし、このハミルトン力学をデジタル量子コンピュータに実装するには、システムのサイズとシミュレーション時間でトロッターステップのサイズをスケーリングする必要がある。
本研究では,古典的最適化問題に対して,有限トラッターステップで断熱的進化を行うことができることを論じる。
この「フロッケの断熱進化」は、通常の連続的な断熱進化と比べて門の数を数桁減少させる。
行列積-状態シミュレーションを用いた数値的なエビデンスでは、多数のインスタンスにおいて3ドル正則グラフ上のマックス・カット問題を、驚くほど低い実行時間で最適に解くことができるが、結合次元が$D=2$である。
計算結果を外挿することで、量子コンピュータが古典的な正確な解法や近似解法と競合するために必要なリソースを推定する。
関連論文リスト
- Large-scale quantum annealing simulation with tensor networks and belief propagation [0.0]
3つの正則グラフに対する量子アニールは1000量子ビットと5000000量子ビットゲートのスケールでも古典的にシミュレートできることを示す。
非退化インスタンスの場合、一意解は最後の縮小された単一量子状態から読み出すことができる。
MaxCutのような退化問題に対して、グラフテンソル-ネットワーク状態に対する近似的な測定シミュレーションアルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-09-18T18:00:08Z) - Ancillary entangling Floquet kicks for accelerating quantum algorithms [0.21990652930491855]
我々は、一次系量子ビットとアシラリー量子ビットを絡めるデジタル多ビットゲートを用いて量子シミュレーションを高速化する。
単純だが非自明な短距離無限長距離逆場イジングモデルと、量子ビット符号化後の水素分子モデルに対して、解法時間の改善を100%に示す。
論文 参考訳(メタデータ) (2024-08-23T19:40:24Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
臨界近傍の量子系の低エネルギー力学が有限絡みによってどのように変化するかを研究する。
その結果、時間依存的臨界現象における絡み合いによる正確な役割が確立された。
論文 参考訳(メタデータ) (2023-01-23T19:23:54Z) - Diabatic Quantum Annealing for the Frustrated Ring Model [0.7046417074932257]
断熱的な進化は、システムサイズと指数関数的にスケールする進化の時間につながる可能性がある。
最適化されたアニーリングスケジュールによる非断熱的進化は、この指数的な減速を回避できることを示す。
論文 参考訳(メタデータ) (2022-12-05T22:16:17Z) - Making Trotterization adaptive and energy-self-correcting for NISQ
devices and beyond [0.0]
連続時間進化のシミュレーションは、古典コンピュータと量子コンピュータの両方で時間離散化を必要とする。
この問題を解決するために量子アルゴリズムを導入し、局所可観測体の量子多体ダイナミクスの制御された解を提供する。
我々のアルゴリズムは、例えば、時間発展ブロックデシミテーション法に基づく数値的アプローチに関して、時間離散化が関与するときに、より一般的なレベルで有用である可能性がある。
論文 参考訳(メタデータ) (2022-09-26T12:54:32Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Iterative Quantum Assisted Eigensolver [0.0]
我々は、ハミルトニアン基底状態を近似するハイブリッド量子古典アルゴリズムを提供する。
我々のアルゴリズムは、現在の量子コンピュータに適した方法で、強力なKrylov部分空間法に基づいている。
論文 参考訳(メタデータ) (2020-10-12T12:25:16Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
変分量子アルゴリズム (VQA) の中心成分は状態準備回路(英語版)であり、アンザッツ(英語版)または変分形式(英語版)とも呼ばれる。
ここでは、対称性を破るユニタリを組み込んだ「解」を導入することで、このアプローチが必ずしも有利であるとは限らないことを示す。
この研究は、より一般的な対称性を破るアンスの開発に向けた第一歩となり、物理学や化学問題への応用に繋がる。
論文 参考訳(メタデータ) (2020-08-03T18:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。