論文の概要: Machine-Learned Closure of URANS for Stably Stratified Turbulence: Connecting Physical Timescales & Data Hyperparameters of Deep Time-Series Models
- arxiv url: http://arxiv.org/abs/2404.16141v1
- Date: Wed, 24 Apr 2024 18:58:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 16:02:40.987588
- Title: Machine-Learned Closure of URANS for Stably Stratified Turbulence: Connecting Physical Timescales & Data Hyperparameters of Deep Time-Series Models
- Title(参考訳): 安定成層乱流の機械学習によるURANSの閉鎖--物理時間スケールと深部時系列モデルのデータハイパーパラメータを接続する
- Authors: Muralikrishnan Gopalakrishnan Meena, Demetri Liousas, Andrew D. Simin, Aditya Kashi, Wesley H. Brewer, James J. Riley, Stephen M. de Bruyn Kops,
- Abstract要約: 我々は、非定常レイノルズ平均ナビエストークス方程式のクロージャモデリングのための時系列機械学習(ML)法を開発した。
我々は, 均一密度勾配により均一で安定に成層された崩壊SSTを考察した。
MLモデルがSSTの力学を正確に捉えるために必要な最小情報の時間尺度の比率は,流れのレイノルズ数と一致することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We develop time-series machine learning (ML) methods for closure modeling of the Unsteady Reynolds Averaged Navier Stokes (URANS) equations applied to stably stratified turbulence (SST). SST is strongly affected by fine balances between forces and becomes more anisotropic in time for decaying cases. Moreover, there is a limited understanding of the physical phenomena described by some of the terms in the URANS equations. Rather than attempting to model each term separately, it is attractive to explore the capability of machine learning to model groups of terms, i.e., to directly model the force balances. We consider decaying SST which are homogeneous and stably stratified by a uniform density gradient, enabling dimensionality reduction. We consider two time-series ML models: Long Short-Term Memory (LSTM) and Neural Ordinary Differential Equation (NODE). Both models perform accurately and are numerically stable in a posteriori tests. Furthermore, we explore the data requirements of the ML models by extracting physically relevant timescales of the complex system. We find that the ratio of the timescales of the minimum information required by the ML models to accurately capture the dynamics of the SST corresponds to the Reynolds number of the flow. The current framework provides the backbone to explore the capability of such models to capture the dynamics of higher-dimensional complex SST flows.
- Abstract(参考訳): 安定成層乱流(SST)に適用した非定常レイノルズ平均ナビエストークス(URANS)方程式のクロージャモデリングのための時系列機械学習(ML)法を開発した。
SSTは力の微妙なバランスに強く影響され、崩壊する場合にはより異方性になる。
さらに、URANS方程式の項のいくつかで説明される物理現象の限定的な理解がある。
各項を個別にモデル化しようとするよりも、項群、すなわち力のバランスを直接モデル化する機械学習の能力を探求することが魅力的である。
等質で安定に成層された崩壊SSTを一様密度勾配で検討し,次元の減少を可能とした。
本稿では,Long Short-Term Memory (LSTM) とNeural Ordinary Differential Equation (NODE) の2つの時系列MLモデルを検討する。
どちらのモデルも正確に動作し、後方試験では数値的に安定である。
さらに、複雑なシステムの物理的に関連する時間スケールを抽出することにより、MLモデルのデータ要求について検討する。
MLモデルがSSTの力学を正確に捉えるために必要な最小情報の時間尺度の比率は,流れのレイノルズ数と一致することがわかった。
現在のフレームワークは、高次元の複雑なSSTフローのダイナミクスを捉えるためのそのようなモデルの能力を探るためのバックボーンを提供する。
関連論文リスト
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
本研究では,流体力学応用における物理原理に基づく純粋深層学習モデルとハイブリッドモデルの一般化能力と堅牢性について検討する。
3つの自己回帰モデルを比較した。畳み込み自己エンコーダと畳み込みLSTM、変分自己エンコーダ(VAE)とConvLSTMと適切な分解(POD)とLSTM(POD-DL)を組み合わせたハイブリッドモデルである。
VAEおよびConvLSTMモデルは層流を正確に予測する一方で、ハイブリッドPOD-DLモデルは層流と乱流の双方において他のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-04-27T12:43:02Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5は、長距離時間モデリングのための効率的な変種である。
トランスフォーマーとConvNISTTMは、長い水平移動実験において、ConvLSTMより3倍速く、トランスフォーマーより400倍速くサンプルを生成する一方で、大幅に性能が向上した。
論文 参考訳(メタデータ) (2023-10-30T16:11:06Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
最近の機械学習(ML)モデルでは、高解像度信号において重要なダイナミクスを捉えることが約束されている。
この研究は、低解像度のダウンサンプリング機能で重要な情報が失われることがしばしばあることを示している。
本稿では,高度な時系列シーケンスモデリングと最先端のニューラルPDEソルバの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-16T06:13:01Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
状態空間ODEに従って進化する潜伏変数を持つ列の生成モデルLS4を提案する。
近年の深層状態空間モデル(S4)に着想を得て,LS4の畳み込み表現を利用して高速化を実現する。
LS4は, 実世界のデータセット上での限界分布, 分類, 予測スコアにおいて, 従来の連続時間生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2022-12-24T15:17:42Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
低ランクテンソル因子化により係数がパラメータ化される時間還元ベクトル自己回帰モデルを開発した。
時間的文脈において、複雑な時間変化系の挙動は、提案モデルにおける時間的モードによって明らかにすることができる。
論文 参考訳(メタデータ) (2022-11-28T15:59:52Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
流れのダイナミクスを捉える低次モデル (ROM) はシミュレーションの計算コストの削減に重要である。
この研究は、フローのダイナミクスと特性を効果的にキャプチャする最小次元モデルのためのデータ駆動フレームワークを示す。
我々はこれをカオス的かつ断続的な行動からなる体制におけるコルモゴロフ流に適用する。
論文 参考訳(メタデータ) (2022-10-29T23:05:39Z) - Deep Learning Closure Models for Large-Eddy Simulation of Flows around
Bluff Bodies [0.0]
大渦シミュレーション(LES)のための深層学習モデルを開発し, 中間レイノルズ数での矩形円筒まわりの非圧縮性流れについて評価した。
DL-LESモデルは, 直接数値シミュレーション(DNS)データと密に一致させるために, 随伴PDE最適化法を用いて訓練される。
本研究では, 抵抗係数, 平均流量, レイノルズ応力を予測するためのDL-LESモデルの精度について検討した。
論文 参考訳(メタデータ) (2022-08-06T11:25:50Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。