Advancing Healthcare Automation: Multi-Agent System for Medical Necessity Justification
- URL: http://arxiv.org/abs/2404.17977v2
- Date: Sat, 6 Jul 2024 09:29:16 GMT
- Title: Advancing Healthcare Automation: Multi-Agent System for Medical Necessity Justification
- Authors: Himanshu Pandey, Akhil Amod, Shivang,
- Abstract summary: This paper explores the application of Multi-Agent System (MAS) that utilize specialized LLM agents to automate Prior Authorization task.
We demonstrate that GPT-4 checklist achieves an accuracy of 86.2% in predicting item-level judgments with evidence, and 95.6% in determining overall checklist judgment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Prior Authorization delivers safe, appropriate, and cost-effective care that is medically justified with evidence-based guidelines. However, the process often requires labor-intensive manual comparisons between patient medical records and clinical guidelines, that is both repetitive and time-consuming. Recent developments in Large Language Models (LLMs) have shown potential in addressing complex medical NLP tasks with minimal supervision. This paper explores the application of Multi-Agent System (MAS) that utilize specialized LLM agents to automate Prior Authorization task by breaking them down into simpler and manageable sub-tasks. Our study systematically investigates the effects of various prompting strategies on these agents and benchmarks the performance of different LLMs. We demonstrate that GPT-4 achieves an accuracy of 86.2% in predicting checklist item-level judgments with evidence, and 95.6% in determining overall checklist judgment. Additionally, we explore how these agents can contribute to explainability of steps taken in the process, thereby enhancing trust and transparency in the system.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making [45.74980058831342]
We introduce a novel multi-agent framework, named Medical Decision-making Agents (MDAgents)
The assigned solo or group collaboration structure is tailored to the medical task at hand, emulating real-world medical decision-making processes.
MDAgents achieved the best performance in seven out of ten benchmarks on tasks requiring an understanding of medical knowledge.
arXiv Detail & Related papers (2024-04-22T06:30:05Z) - Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology [0.6397820821509177]
We introduce an alternative approach to multimodal medical AI that utilizes the generalist capabilities of a large language model (LLM) as a central reasoning engine.
This engine autonomously coordinates and deploys a set of specialized medical AI tools.
We show that the system has a high capability in employing appropriate tools (97%), drawing correct conclusions (93.6%), and providing complete (94%), and helpful (89.2%) recommendations for individual patient cases.
arXiv Detail & Related papers (2024-04-06T15:50:19Z) - AgentMD: Empowering Language Agents for Risk Prediction with Large-Scale
Clinical Tool Learning [11.8292941452582]
We introduce AgentMD, a novel language agent capable of curating and applying clinical calculators across various clinical contexts.
AgentMD has automatically curated a collection of 2,164 diverse clinical calculators with executable functions and structured documentation, collectively named RiskCalcs.
Manual evaluations show that RiskCalcs tools achieve an accuracy of over 80% on three quality metrics.
arXiv Detail & Related papers (2024-02-20T18:37:19Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.