論文の概要: Uncertainty relation and the constrained quadratic programming
- arxiv url: http://arxiv.org/abs/2404.18671v1
- Date: Mon, 29 Apr 2024 13:11:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 13:38:04.367992
- Title: Uncertainty relation and the constrained quadratic programming
- Title(参考訳): 不確かさ関係と制約付き二次計画法
- Authors: Lin Zhang, Dade Wu, Ming-Jing Zhao, Hua Nan,
- Abstract要約: 分散和の厳密な状態独立な下界は、最適化理論における非線形制約を伴う二次計画問題として特徴づけられる。
本稿では、これらの2次プログラミングインスタンスを解くのに適した数値アルゴリズムを提案し、その効率と精度を強調した。
- 参考スコア(独自算出の注目度): 3.397254718930225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The uncertainty relation is a fundamental concept in quantum theory, plays a pivotal role in various quantum information processing tasks. In this study, we explore the additive uncertainty relation pertaining to two or more observables, in terms of their variance,by utilizing the generalized Gell-Mann representation in qudit systems. We find that the tight state-independent lower bound of the variance sum can be characterized as a quadratic programming problem with nonlinear constraints in optimization theory. As illustrative examples, we derive analytical solutions for these quadratic programming problems in lower-dimensional systems, which align with the state-independent lower bounds. Additionally, we introduce a numerical algorithm tailored for solving these quadratic programming instances, highlighting its efficiency and accuracy. The advantage of our approach lies in its potential ability to simultaneously achieve the optimal value of the quadratic programming problem with nonlinear constraints but also precisely identify the extremal state where this optimal value is attained. This enables us to establish a tight state-independent lower bound for the sum of variances, and further identify the extremal state at which this lower bound is realized.
- Abstract(参考訳): 不確実性関係は量子理論の基本的な概念であり、様々な量子情報処理タスクにおいて重要な役割を果たす。
本研究では,2つ以上の観測可能量に関する加法的不確実性関係を,その分散の観点から検討する。
分散和の厳密な状態独立な下界は、最適化理論における非線形制約を伴う二次計画問題として特徴づけられる。
図示的な例として、状態非依存な下界と整合する低次元系におけるこれらの二次計画問題の解析解を導出する。
さらに、これらの2次プログラミングインスタンスを解くのに適した数値アルゴリズムを導入し、その効率と精度を強調した。
このアプローチの利点は、非線形制約を伴う二次計画問題の最適値を同時に達成する能力と、この最適値が達成された極端状態を正確に識別できることにある。
これにより、分散の和に対して厳密な状態独立な下界を確立することができ、さらにこの下界が実現される極端状態を特定することができる。
関連論文リスト
- Subgradient Method using Quantum Annealing for Inequality-Constrained Binary Optimization Problems [0.4915744683251151]
不等式制約は、統計力学により、同様の目的関数に緩和できることを示す。
本研究では, 典型的な不等式制約付き最適化問題である2次クナップサック問題において, この手法の性能を評価する。
論文 参考訳(メタデータ) (2024-11-11T11:59:50Z) - A Double Tracking Method for Optimization with Decentralized Generalized Orthogonality Constraints [4.6796315389639815]
分散最適化問題は分散制約の存在下では解決できない。
目的関数の勾配と制約写像のヤコビアンを同時に追跡する新しいアルゴリズムを導入する。
合成と実世界の両方のデータセットに数値的な結果を示す。
論文 参考訳(メタデータ) (2024-09-08T06:57:35Z) - Near-Optimal Solutions of Constrained Learning Problems [85.48853063302764]
機械学習システムでは、振る舞いを縮小する必要性がますます顕在化している。
これは、双対ロバスト性変数を満たすモデルの開発に向けた最近の進歩によって証明されている。
この結果から, 豊富なパラメトリゼーションは非次元的, 有限な学習問題を効果的に緩和することが示された。
論文 参考訳(メタデータ) (2024-03-18T14:55:45Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
証明可能な性能保証を伴う忠実度推定のための新しい,効率的な量子アルゴリズムを開発した。
我々のアルゴリズムは量子特異値変換のような高度な量子線型代数技術を用いる。
任意の非自明な定数加算精度に対する忠実度推定は一般に困難であることを示す。
論文 参考訳(メタデータ) (2022-03-30T02:02:16Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Robust Finite-State Controllers for Uncertain POMDPs [25.377873201375515]
不確実部分可観測決定過程 (uPOMDPs) により、標準POMDPの確率的遷移観測関数は不確実集合に属する。
UPOMDPの有限メモリポリシを計算するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-24T02:58:50Z) - Modeling Linear Inequality Constraints in Quadratic Binary Optimization
for Variational Quantum Eigensolver [0.0]
本稿では, 変分量子固有解法における配向型変分形式の利用について紹介する。
通常、いくつかの最適化問題に現れる4つの制約がモデル化されている。
提案手法の主な利点は、変分形式のパラメータの数が一定であることである。
論文 参考訳(メタデータ) (2020-07-26T23:36:22Z) - The limits of min-max optimization algorithms: convergence to spurious
non-critical sets [82.74514886461257]
min-max最適化アルゴリズムは周期サイクルや同様の現象が存在するため、はるかに大きな問題に遭遇する。
問題のどの点も引き付けないアルゴリズムが存在することを示す。
ほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほとんどである。
論文 参考訳(メタデータ) (2020-06-16T10:49:27Z) - Consistent Second-Order Conic Integer Programming for Learning Bayesian
Networks [2.7473982588529653]
連続観測データからBNのスパースDAG構造を学習する問題について検討する。
この数学的プログラムの最適解は、ある条件下では望ましい統計的性質を持つことが知られている。
ほぼ最適解を得るために, 分岐・結合プロセスの終了に向け, 早期停止条件を提案する。
論文 参考訳(メタデータ) (2020-05-29T00:13:15Z) - The empirical duality gap of constrained statistical learning [115.23598260228587]
本研究では,制約付き統計学習問題(制約なし版)について,ほぼ全ての現代情報処理のコアとなる研究を行った。
本稿では, 有限次元パラメータ化, サンプル平均, 双対性理論を利用して, 無限次元, 未知分布, 制約を克服する制約付き統計問題に取り組むことを提案する。
フェアラーニングアプリケーションにおいて,この制約付き定式化の有効性と有用性を示す。
論文 参考訳(メタデータ) (2020-02-12T19:12:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。