論文の概要: Distributed Stochastic Optimization of a Neural Representation Network for Time-Space Tomography Reconstruction
- arxiv url: http://arxiv.org/abs/2404.19075v1
- Date: Mon, 29 Apr 2024 19:41:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:00:28.535086
- Title: Distributed Stochastic Optimization of a Neural Representation Network for Time-Space Tomography Reconstruction
- Title(参考訳): 時間空間トモグラフィ再構成のためのニューラルネットワークの分散確率最適化
- Authors: K. Aditya Mohan, Massimiliano Ferrucci, Chuck Divin, Garrett A. Stevenson, Hyojin Kim,
- Abstract要約: X線CT(Computerd tomography)を用いた動的事象や変形物体の4次元時間空間再構成は、非常に不適切な逆問題である。
既存のアプローチでは、オブジェクトは数千から数百のX線投影計測画像の間静止していると仮定している。
本稿では,新しい分散学習アルゴリズムを用いて学習した,分散暗黙的ニューラルネットワークを用いた4次元時間空間再構成を提案する。
- 参考スコア(独自算出の注目度): 4.689071714940848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 4D time-space reconstruction of dynamic events or deforming objects using X-ray computed tomography (CT) is an extremely ill-posed inverse problem. Existing approaches assume that the object remains static for the duration of several tens or hundreds of X-ray projection measurement images (reconstruction of consecutive limited-angle CT scans). However, this is an unrealistic assumption for many in-situ experiments that causes spurious artifacts and inaccurate morphological reconstructions of the object. To solve this problem, we propose to perform a 4D time-space reconstruction using a distributed implicit neural representation (DINR) network that is trained using a novel distributed stochastic training algorithm. Our DINR network learns to reconstruct the object at its output by iterative optimization of its network parameters such that the measured projection images best match the output of the CT forward measurement model. We use a continuous time and space forward measurement model that is a function of the DINR outputs at a sparsely sampled set of continuous valued object coordinates. Unlike existing state-of-the-art neural representation architectures that forward and back propagate through dense voxel grids that sample the object's entire time-space coordinates, we only propagate through the DINR at a small subset of object coordinates in each iteration resulting in an order-of-magnitude reduction in memory and compute for training. DINR leverages distributed computation across several compute nodes and GPUs to produce high-fidelity 4D time-space reconstructions even for extremely large CT data sizes. We use both simulated parallel-beam and experimental cone-beam X-ray CT datasets to demonstrate the superior performance of our approach.
- Abstract(参考訳): X線CT(Computerd tomography)を用いた動的事象の4次元時間空間再構成や変形物体の再構成は、非常に不適切な逆問題である。
既存のアプローチでは、オブジェクトは数千から数百のX線投影計測画像(連続的な制限角度CTスキャンの再構成)の間静止していると仮定している。
しかし、これは多くのその場実験における非現実的な仮定であり、これは突発的なアーティファクトを引き起こし、対象の非正確な形態的再構成を引き起こす。
そこで本研究では,新しい分散確率的学習アルゴリズムを用いて学習した分散暗黙的ニューラルネットワーク(DINR)ネットワークを用いた4次元時間空間再構成を提案する。
我々のDINRネットワークは、測定された投影画像がCT前方計測モデルの出力に最も合うように、そのネットワークパラメータを反復的に最適化することで、その出力でオブジェクトを再構築することを学ぶ。
連続値オブジェクト座標のスパースサンプリングセットにおけるDINR出力の関数である連続時間と空間フォワードの測定モデルを用いる。
オブジェクトの時間空間座標全体をサンプリングする密度の高いボクセルグリッドを前後に伝播する既存の最先端のニューラル表現アーキテクチャとは異なり、各イテレーションにおいてオブジェクト座標の小さなサブセットでDINRを伝播するだけで、メモリとトレーニング用の計算のオーダー・オブ・マグニチュードが減少する。
DINRは、複数の計算ノードとGPUにわたる分散計算を利用して、非常に大きなCTデータサイズであっても、高忠実な4D時間空間再構成を生成する。
我々は, 並列ビームと実験コーンビームX線CTデータの両方を用いて, 提案手法の優れた性能を実証した。
関連論文リスト
- CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking [52.393359791978035]
Motion2VecSetsは点雲列からの動的表面再構成のための4次元拡散モデルである。
グローバルな潜在符号の代わりに、潜在集合で4Dダイナミクスをパラメータ化する。
時間的コヒーレントな物体追跡のために、変形潜在集合を同期的に認知し、複数のフレーム間で情報を交換する。
論文 参考訳(メタデータ) (2024-01-12T15:05:08Z) - IMJENSE: Scan-specific Implicit Representation for Joint Coil
Sensitivity and Image Estimation in Parallel MRI [11.159664312706704]
IMJENSEは、並列MRI再構成を改善するためのスキャン特異的暗黙の神経表現に基づく方法である。
IMJENSEは、MRI画像とコイル感度の強力な連続表現と共同推定により、従来の画像やk空間領域再構成アルゴリズムよりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-11-21T07:24:11Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) は画像の逆問題である。
近年の研究では、インプリシット・ニューラル・リ表現(INR)を用いて、シングラムとCT画像の座標に基づくマッピングを構築している。
自己教師型SVCT再構成法の提案 -抗エイリアス射影表現場(APRF)-
APRFは空間的制約によって隣接する投影ビュー間の連続的な表現を構築することができる。
論文 参考訳(メタデータ) (2023-07-11T14:04:12Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
多次元特徴量に基づくトモSARイメージングを実現するためのモデルデータ駆動型ネットワークを提案する。
画像シーンの多次元的特徴を効果的に向上するために、2つの2次元処理モジュール(畳み込みエンコーダ-デコーダ構造)を追加します。
従来のCS-based FISTA法とDL-based gamma-Net法と比較して,提案手法は良好な画像精度を有しつつ,完全性を向上させる。
論文 参考訳(メタデータ) (2022-11-28T02:01:43Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
CT検査では投射回数を直感的に減らすことで放射線線量を大幅に減少させることができる。
疎視データを用いた従来のディープラーニング技術では、教師付き方法でネットワークをトレーニングするためにスパースビュー/フルビューCTイメージペアが必要である。
スパース・ビューCT再構成のための非教師なしスコアベース生成モデルについて検討した。
論文 参考訳(メタデータ) (2022-11-25T06:49:18Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
本稿では、勾配に基づくフィッティング法とパラメトリックニューラルネットワーク合成モジュールを組み合わせる。
画像合成ネットワークは、ポーズ設定空間を効率的に分散するように設計されている。
本研究では,2次元画像のみから高精度に物体の向きを復元できることを実験的に示す。
論文 参考訳(メタデータ) (2020-08-18T20:30:47Z) - Multi-Slice Fusion for Sparse-View and Limited-Angle 4D CT
Reconstruction [3.045887205265198]
複数の低次元デノイザの融合に基づく新しい4次元再構成アルゴリズムであるマルチスライス融合を提案する。
分散異種クラスタ上でのマルチスライス融合を実装し,大規模な4次元ボリュームを適切な時間で再構築する。
論文 参考訳(メタデータ) (2020-08-01T02:32:43Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3次元畳み込みニューラルネットワーク(CNN)は、単一のOCT画像を用いたマーカーオブジェクトのポーズ推定に有望な性能を示した。
我々は3次元CNNを4次元時間CNNに拡張し、マーカーオブジェクト追跡のための追加の時間情報の影響を評価する。
論文 参考訳(メタデータ) (2020-07-02T12:02:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。