論文の概要: Regression for matrix-valued data via Kronecker products factorization
- arxiv url: http://arxiv.org/abs/2404.19220v1
- Date: Tue, 30 Apr 2024 02:44:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:43:32.751701
- Title: Regression for matrix-valued data via Kronecker products factorization
- Title(参考訳): クロネッカー生成物分解による行列値データの回帰
- Authors: Yin-Jen Chen, Minh Tang,
- Abstract要約: 我々は、パラメータ $beta_1k サブセット Rep times q_1$ および $beta_2k サブセット Rep times q$ を推定するための推定アルゴリズム KRO-PRO-FAC を提案する。
シミュレーションおよび実データに関する数値的研究は,提案手法が既存の手法と比較して,推定誤差と予測精度の両方において競合的であることを示している。
- 参考スコア(独自算出の注目度): 0.5156484100374059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the matrix-variate regression problem $Y_i = \sum_{k} \beta_{1k} X_i \beta_{2k}^{\top} + E_i$ for $i=1,2\dots,n$ in the high dimensional regime wherein the response $Y_i$ are matrices whose dimensions $p_{1}\times p_{2}$ outgrow both the sample size $n$ and the dimensions $q_{1}\times q_{2}$ of the predictor variables $X_i$ i.e., $q_{1},q_{2} \ll n \ll p_{1},p_{2}$. We propose an estimation algorithm, termed KRO-PRO-FAC, for estimating the parameters $\{\beta_{1k}\} \subset \Re^{p_1 \times q_1}$ and $\{\beta_{2k}\} \subset \Re^{p_2 \times q_2}$ that utilizes the Kronecker product factorization and rearrangement operations from Van Loan and Pitsianis (1993). The KRO-PRO-FAC algorithm is computationally efficient as it does not require estimating the covariance between the entries of the $\{Y_i\}$. We establish perturbation bounds between $\hat{\beta}_{1k} -\beta_{1k}$ and $\hat{\beta}_{2k} - \beta_{2k}$ in spectral norm for the setting where either the rows of $E_i$ or the columns of $E_i$ are independent sub-Gaussian random vectors. Numerical studies on simulated and real data indicate that our procedure is competitive, in terms of both estimation error and predictive accuracy, compared to other existing methods.
- Abstract(参考訳): 行列-変数回帰問題 $Y_i = \sum_{k} \beta_{1k} X_i \beta_{2k}^{\top} + E_i$ for $i=1,2\dots,n$ in the high dimensional regime where the response $Y_i$ are matrices that dimensions $p_{1}\times p_{2}$ outgrow both the sample size $n$ and the dimensions $q_{1}\times q_{2}$ of the predictor variables $X_i$ i., $q_{1},q_{2} \ll n \ll p_{1},p_{2}$。
KRO-PRO-FAC と呼ばれるパラメータ $\{\beta_{1k}\} \subset \Re^{p_1 \times q_1}$ と $\{\beta_{2k}\} \subset \Re^{p_2 \times q_2}$ を推定するための推定アルゴリズムを提案する。
KRO-PRO-FACアルゴリズムは、$\{Y_i\}$のエントリ間の共分散を見積もる必要がないため、計算的に効率的である。
我々は、$E_i$の行または$E_i$の列が独立なガウス乱ベクトルであるような場合のスペクトルノルムにおいて、$\hat{\beta}_{1k} -\beta_{1k}$と$\hat{\beta}_{2k} - \beta_{2k}$の間の摂動境界を確立する。
シミュレーションおよび実データに関する数値的研究は,提案手法が既存の手法と比較して,推定誤差と予測精度の両方において競合的であることを示している。
関連論文リスト
- OPORP: One Permutation + One Random Projection [37.6593006747285]
OPORPは、データ縮小/圧縮を達成するために、count-sketch'型のデータ構造の一種を使用する。
1つの重要なステップは、$k$サンプルを$l$標準に正規化することだ。
OPORPでは、(i)正規化と(ii)固定長ビンニングスキームの2つの重要なステップが、コサイン類似性を推定する精度を大幅に改善した。
論文 参考訳(メタデータ) (2023-02-07T14:45:34Z) - Optimal Query Complexities for Dynamic Trace Estimation [59.032228008383484]
我々は,行列がゆっくりと変化している動的環境において,正確なトレース推定に必要な行列ベクトルクエリ数を最小化する問題を考える。
我々は、$delta$失敗確率で$epsilon$エラーまで、すべての$m$トレースを同時に推定する新しいバイナリツリー要約手順を提供する。
我々の下界(1)は、静的な設定においてもフロベニウスノルム誤差を持つ行列ベクトル積モデルにおけるハッチンソン推定子の第一の厳密な境界を与え、(2)動的トレース推定のための最初の無条件下界を与える。
論文 参考訳(メタデータ) (2022-09-30T04:15:44Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
対象ベクトルの少数のエントリのみを問合せすることを目的とした線形回帰のためのアクティブサンプリングアルゴリズムについて検討する。
我々はこの$d$への依存が対数的要因まで最適であることを示す。
また、損失関数に対して最初の全感度上界$O(dmax1,p/2log2 n)$を提供し、最大で$p$成長する。
論文 参考訳(メタデータ) (2021-11-09T00:20:01Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
関数 $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
ここでは、$|mathbb E[R(z)] - tilde R(z)|_F を示す。
論文 参考訳(メタデータ) (2021-09-06T14:21:43Z) - Chi-square and normal inference in high-dimensional multi-task
regression [7.310043452300736]
本稿では,Multi-Task(MT)線形モデルにおける未知の係数行列$B*$サイズ$ptimes T$に対するカイ二乗法および正規手法を提案する。
論文 参考訳(メタデータ) (2021-07-16T11:19:49Z) - Sparse sketches with small inversion bias [79.77110958547695]
逆バイアスは、逆の共分散に依存する量の推定を平均化するときに生じる。
本研究では、確率行列に対する$(epsilon,delta)$-unbiased estimatorという概念に基づいて、逆バイアスを解析するためのフレームワークを開発する。
スケッチ行列 $S$ が密度が高く、すなわちサブガウスのエントリを持つとき、$(epsilon,delta)$-unbiased for $(Atop A)-1$ は $m=O(d+sqrt d/ のスケッチを持つ。
論文 参考訳(メタデータ) (2020-11-21T01:33:15Z) - Truncated Linear Regression in High Dimensions [26.41623833920794]
truncated linear regression において、従属変数 $(A_i, y_i)_i$ は $y_i= A_irm T cdot x* + eta_i$ は固定された未知の興味ベクトルである。
目標は、$A_i$とノイズ分布に関するいくつかの好ましい条件の下で$x*$を回復することである。
我々は、$k$-sparse $n$-dimensional vectors $x*$ from $m$ truncated sample。
論文 参考訳(メタデータ) (2020-07-29T00:31:34Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。