How decoherence affects the security of BB84 quantum key distribution protocol
- URL: http://arxiv.org/abs/2404.19445v1
- Date: Tue, 30 Apr 2024 10:53:01 GMT
- Title: How decoherence affects the security of BB84 quantum key distribution protocol
- Authors: Robert Okuła, Piotr Mironowicz,
- Abstract summary: We work within the decoherence theory framework and employ the model of measurements provided by quantum Darwinism.
We investigate how much of the information about the results crucial for the cryptographic key to be kept secret is leaked during the quantum measurement process.
We also show how the security can be affected by different ways of organizing the surrounding environment into layers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present how the mechanisms of quantum Darwinism allow for the leakage of information in the standard BB84 quantum key distribution protocol, a paradigmatic prepare and measure quantum cryptography scenario. We work within the decoherence theory framework and employ the model of measurements provided by quantum Darwinism. We investigate how much of the information about the results crucial for the cryptographic key to be kept secret is leaked during the quantum measurement process and subsequently how much of that information might be later obtained by an eavesdropper using a type of a so-called Van Eck side-channel wiretapping. We also show how the security can be affected by different ways of organizing the surrounding environment into layers, e.g. rooms or other divisions affecting the spread of quantum information in the environment and its interaction, paving a venue to potential enhancements, and insight into proper engineering of shieldings for cryptographical devices.
Related papers
- Simulations of distributed-phase-reference quantum key distribution protocols [0.1398098625978622]
Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
arXiv Detail & Related papers (2024-06-13T13:19:04Z) - Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Deep-Learning-Based Radio-Frequency Side-Channel Attack on Quantum Key
Distribution [0.0]
Quantum key distribution (QKD) protocols are proven secure based on fundamental physical laws.
Side channels, where the encoded quantum state is correlated with properties of other degrees of freedom of the quantum channel, allow an eavesdropper to obtain information unnoticeably.
We here demonstrate a side-channel attack using a deep convolutional neural network to analyze the recorded classical, radio-frequency electromagnetic emissions.
arXiv Detail & Related papers (2023-10-20T18:00:02Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Improving the performance of quantum cryptography by using the
encryption of the error correction data [0.0]
We introduce the idea of encrypting classical communication related to error-correction in order to decrease the amount of information available to the eavesdropper.
We analyze the applicability of the method in the context of additional assumptions concerning the eavesdropper's quantum memory coherence time.
arXiv Detail & Related papers (2023-06-21T15:42:54Z) - Secure Key from Quantum Discord [22.97866257572447]
We show how to make use of discord to analyze security in a specific quantum cryptography protocol.
Our method is robust against imperfections in qubit sources and qubit measurements as well as basis misalignment due to quantum channels.
arXiv Detail & Related papers (2023-04-12T14:21:49Z) - Experimental quantum key distribution certified by Bell's theorem [0.0]
cryptographic key exchange protocols traditionally rely on computational conjectures to provide security against eavesdropping attacks.
quantum key distribution protocols provide information-theoretic security against such attacks.
However, quantum protocols are subject to a new class of attacks exploiting implementation defects in the physical devices involved.
We present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities.
arXiv Detail & Related papers (2021-09-29T17:52:48Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.