論文の概要: Structure learning of Hamiltonians from real-time evolution
- arxiv url: http://arxiv.org/abs/2405.00082v2
- Date: Sun, 28 Jul 2024 20:15:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 23:18:12.354953
- Title: Structure learning of Hamiltonians from real-time evolution
- Title(参考訳): リアルタイム進化からハミルトニアンの構造学習
- Authors: Ainesh Bakshi, Allen Liu, Ankur Moitra, Ewin Tang,
- Abstract要約: ハミルトン学習に対する新しい一般的なアプローチとして、難解な構造学習の変種を解くだけでなく、この分野の他のオープンな問題も解決する。
我々のアルゴリズムは、総進化時間$O(log (n)/varepsilon)$でハミルトニアンを$varepsilon$エラーに復元し、以下の魅力的な性質を持つ。
応用として、ハミルトニアンが1/varepsilon2$の標準極限を破り、精度$varepsilon$までパワー-ロー崩壊を示すことも学べる。
- 参考スコア(独自算出の注目度): 22.397920564324973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of Hamiltonian structure learning from real-time evolution: given the ability to apply $e^{-\mathrm{i} Ht}$ for an unknown local Hamiltonian $H = \sum_{a = 1}^m \lambda_a E_a$ on $n$ qubits, the goal is to recover $H$. This problem is already well-understood under the assumption that the interaction terms, $E_a$, are given, and only the interaction strengths, $\lambda_a$, are unknown. But how efficiently can we learn a local Hamiltonian without prior knowledge of its interaction structure? We present a new, general approach to Hamiltonian learning that not only solves the challenging structure learning variant, but also resolves other open questions in the area, all while achieving the gold standard of Heisenberg-limited scaling. In particular, our algorithm recovers the Hamiltonian to $\varepsilon$ error with total evolution time $O(\log (n)/\varepsilon)$, and has the following appealing properties: (1) it does not need to know the Hamiltonian terms; (2) it works beyond the short-range setting, extending to any Hamiltonian $H$ where the sum of terms interacting with a qubit has bounded norm; (3) it evolves according to $H$ in constant time $t$ increments, thus achieving constant time resolution. As an application, we can also learn Hamiltonians exhibiting power-law decay up to accuracy $\varepsilon$ with total evolution time beating the standard limit of $1/\varepsilon^2$.
- Abstract(参考訳): e^{-\mathrm{i} Ht}$ を未知の局所ハミルトニアン $H = \sum_{a = 1}^m \lambda_a E_a$ に対して適用できることを考えると、その目標は$H$ を回復することである。
この問題は、相互作用項の$E_a$が与えられ、相互作用強度の$\lambda_a$のみが未知であるという前提の下で既によく理解されている。
しかし、その相互作用構造に関する事前の知識を必要とせずに、局所ハミルトニアンをどの程度効率的に学べるか?
我々は、ハミルトニアン学習に対して、挑戦的な構造学習の変種を解くだけでなく、ハイゼンベルク限定スケーリングのゴールド標準を達成しながら、その領域で他のオープンな問題を解く新しい一般的なアプローチを提案する。
特に、我々のアルゴリズムは、全進化時間$O(\log (n)/\varepsilon)$でハミルトニアンを$\varepsilon=誤差に復元し、(1)ハミルトニアン項を知る必要がなく、(2) クビットと相互作用する項の和がノルムが有界である任意のハミルトニアン$H$にまで拡張し、(3) 定数時間$t$インクリメントで$H$に従って進化し、一定の時間分解を達成する。
応用として、ハミルトニアンは1/\varepsilon^2$の標準極限を破って、精度$\varepsilon$までパワーロー崩壊を示すことも学べる。
関連論文リスト
- New random compiler for Hamiltonians via Markov Chains [0.08192907805418585]
アディアバティックアルゴリズムのような多くの量子アルゴリズムは、ハミルトン進化をシミュレートする必要がある。
我々は,第1次ランダム化トロッターに似た新しいコンパイラを開発したが,そのフレームワークは間違いなくシンプルである。
大規模なランダム化スキームと時間依存重みをサポートするため、より多用途である。
論文 参考訳(メタデータ) (2024-11-10T14:57:25Z) - Learning the structure of any Hamiltonian from minimal assumptions [2.810160553339817]
我々は、ブラックボックスクエリから未知の量子多体ハミルトン$H$を学習する問題とその時間進化について研究する。
我々は、ハミルトニアン項の個数のみを仮定して、任意の$n$-量子ハミルトニアンを学ぶための効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-29T00:43:33Z) - Learning $k$-body Hamiltonians via compressed sensing [0.5867838258848337]
我々は、必ずしも幾何学的に局所ではない、M$未知のパウリ項を持つ$k$ボディハミルトニアンを学習する問題を研究する。
ハミルトンの精度を$epsilon$と総進化時間で学習するプロトコルを提案する。
論文 参考訳(メタデータ) (2024-10-24T17:16:19Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
低エネルギー部分空間内のハミルトン$H$の下で時間発展をシミュレートする作業を考える。
我々は,$O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$クエリを,任意の$Gamma$に対するブロックエンコーディングに使用する量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-04T17:58:01Z) - Hamiltonian Learning via Shadow Tomography of Pseudo-Choi States [0.6768558752130311]
我々は、疑似チョイ状態と呼ばれるリソースを通じてハミルトン語を学ぶための新しいアプローチを導入する。
M$ の項を持つハミルトニアンに対して、ハミルトニアン係数は誤差の中で古典的なシャドウトモグラフィーによって推定できることを示す。
また、我々の学習プロセスは、リソース状態のエラーやハミルトンクラスのエラーに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2023-08-24T18:36:51Z) - Quantum and classical low-degree learning via a dimension-free Remez
inequality [52.12931955662553]
ハイパーグリッド上の関数をポリトーラス上の高調波拡張に関連付ける新しい方法を示す。
巡回群 $exp(2pi i k/K)_k=1K$ の積に対して函数の上限が$f$であることを示す。
我々は最近、超キューブやキュービット上の観測可能な観測値の低次学習を、同様に効率的に行う方法として、EI22, CHP, VZ22を引用して、新しい空間に拡張した。
論文 参考訳(メタデータ) (2023-01-04T04:15:40Z) - Learning many-body Hamiltonians with Heisenberg-limited scaling [3.460138063155115]
N$-qubit 局所ハミルトニアンの相互作用を学習するためのハイゼンベルク限界を達成するアルゴリズムを提案する。
総進化時間$mathcalO(epsilon-1)$の後に、提案アルゴリズムは高い確率で$N$-qubit Hamiltonianのパラメータを$epsilon$-errorに効率的に推定することができる。
論文 参考訳(メタデータ) (2022-10-06T16:30:51Z) - Cryptographic Hardness of Learning Halfspaces with Massart Noise [59.8587499110224]
マスアートノイズの存在下でのPAC学習ハーフスペースの複雑さについて検討した。
我々は,最適0-1誤差が小さい場合でも,リアルタイムのMassartハーフスペース学習者が$Omega(eta)$よりも良い誤差を得られることを示す。
論文 参考訳(メタデータ) (2022-07-28T17:50:53Z) - Some Remarks on the Regularized Hamiltonian for Three Bosons with
Contact Interactions [77.34726150561087]
3次元のゼロレンジ力を介して相互作用する3つのボソン系のモデルハミルトンの性質について論じる。
特に、適当な二次形式 $Q$ から始め、自己随伴およびハミルトンの$mathcal H$ の下から有界となるものを構築することができる。
しきい値 $gamma_c$ が最適であることは、次の2次形式 $Q$ が下から非有界であるという意味では、$gamma_c$ が最適であることを示している。
論文 参考訳(メタデータ) (2022-07-01T10:01:14Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
ガウス境界の下でのマスアートノイズ付きmathbbRd$におけるPAC学習ハーフスペースの問題について検討する。
この結果は,Massartモデルにおける学習ハーフスペースの複雑さを定性的に特徴づけるものである。
論文 参考訳(メタデータ) (2021-08-19T16:16:48Z) - Hardness of Learning Halfspaces with Massart Noise [56.98280399449707]
我々は、マッサート(有界)ノイズの存在下でPAC学習のハーフスペースの複雑さを研究します。
情報理論上最適なエラーとSQアルゴリズムで達成できる最高のエラーとの間に指数関数的なギャップがあることを示した。
論文 参考訳(メタデータ) (2020-12-17T16:43:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。