Federated Graph Learning for EV Charging Demand Forecasting with Personalization Against Cyberattacks
- URL: http://arxiv.org/abs/2405.00742v1
- Date: Tue, 30 Apr 2024 05:17:46 GMT
- Title: Federated Graph Learning for EV Charging Demand Forecasting with Personalization Against Cyberattacks
- Authors: Yi Li, Renyou Xie, Chaojie Li, Yi Wang, Zhaoyang Dong,
- Abstract summary: Mitigating cybersecurity risk in electric vehicle (EV) charging demand forecasting plays a crucial role in the safe operation of collective EV chargings, the stability of the power grid, and the cost-effective infrastructure expansion.
Existing methods either suffer from the data privacy issue and the susceptibility to cyberattacks or fail to consider the spatial correlation among different stations.
- Score: 9.83349306361658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mitigating cybersecurity risk in electric vehicle (EV) charging demand forecasting plays a crucial role in the safe operation of collective EV chargings, the stability of the power grid, and the cost-effective infrastructure expansion. However, existing methods either suffer from the data privacy issue and the susceptibility to cyberattacks or fail to consider the spatial correlation among different stations. To address these challenges, a federated graph learning approach involving multiple charging stations is proposed to collaboratively train a more generalized deep learning model for demand forecasting while capturing spatial correlations among various stations and enhancing robustness against potential attacks. Firstly, for better model performance, a Graph Neural Network (GNN) model is leveraged to characterize the geographic correlation among different charging stations in a federated manner. Secondly, to ensure robustness and deal with the data heterogeneity in a federated setting, a message passing that utilizes a global attention mechanism to aggregate personalized models for each client is proposed. Thirdly, by concerning cyberattacks, a special credit-based function is designed to mitigate potential threats from malicious clients or unwanted attacks. Extensive experiments on a public EV charging dataset are conducted using various deep learning techniques and federated learning methods to demonstrate the prediction accuracy and robustness of the proposed approach.
Related papers
- Data-Driven Optimization of EV Charging Station Placement Using Causal Discovery [6.061650526072546]
We analyze charging data from Palo Alto and Boulder to uncover latent relationships between station characteristics and utilization.
Applying structural learning algorithms to this data reveals that charging demand is primarily determined by three factors: proximity to amenities, EV registration density, and adjacency to high-traffic routes.
We develop an optimization framework that translates these insights into actionable placement recommendations.
arXiv Detail & Related papers (2025-03-21T11:15:02Z) - Asynchronous Personalized Federated Learning through Global Memorization [16.630360485032163]
Federated Learning offers a privacy preserving solution by enabling collaborative model training across decentralized devices without centralizing sensitive data.
We propose the Asynchronous Personalized Federated Learning framework, which empowers clients to develop personalized models using a server side semantic generator.
This generator, trained via data free knowledge transfer under global model supervision, enhances client data diversity by producing both seen and unseen samples.
To counter the risks of synthetic data impairing training, we introduce a decoupled model method, ensuring robust personalization.
arXiv Detail & Related papers (2025-03-01T09:00:33Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
We introduce a simulation environment that replicates the power grid's infrastructure and communication dynamics.
The framework generates diverse, realistic attack data to train machine learning algorithms for detecting and mitigating cyber threats.
It also provides a controlled, flexible platform to evaluate emerging security technologies, including advanced decision support systems.
arXiv Detail & Related papers (2024-12-09T07:07:17Z) - Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand [3.7690784039257292]
This paper studies the forecasting problem of multiple electric vehicle charging stations (EVCSs) in a hierarchical probabilistic manner.
For each charging station, a deep learning model based on a partial input convex neural network (PICNN) is trained to predict the day-ahead charging demand's conditional distribution.
Differentiable convex optimization layers (DCLs) are used to reconcile the scenarios sampled from the distributions to yield coherent scenarios.
arXiv Detail & Related papers (2024-11-01T03:35:04Z) - Large-Scale Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
By employing a local-inference strategy, our approach scales with linear complexity in the number of variables, efficiently scaling up to thousands of variables.
Empirical results demonstrate superior performance in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Ungeneralizable Examples [70.76487163068109]
Current approaches to creating unlearnable data involve incorporating small, specially designed noises.
We extend the concept of unlearnable data to conditional data learnability and introduce textbfUntextbfGeneralizable textbfExamples (UGEs)
UGEs exhibit learnability for authorized users while maintaining unlearnability for potential hackers.
arXiv Detail & Related papers (2024-04-22T09:29:14Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
Power system load data can inadvertently reveal the daily routines of residential users, posing a risk to their property security.
We introduce a Markovian Switching-based distributed training framework, the convergence of which is substantiated through rigorous theoretical analysis.
Case studies employing real-world power system load data validate the efficacy of our proposed algorithm.
arXiv Detail & Related papers (2024-02-02T16:39:08Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
Electricity load forecasting is an essential task within smart grids to assist demand and supply balance.
Fine-grained load profiles can expose users' electricity consumption behaviors, which raises privacy and security concerns.
This paper presents a novel transformer-based deep learning approach with federated learning for short-term electricity load prediction.
arXiv Detail & Related papers (2023-10-26T15:27:55Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - FedDiSC: A Computation-efficient Federated Learning Framework for Power
Systems Disturbance and Cyber Attack Discrimination [1.0621485365427565]
This paper proposes a novel Federated Learning-based privacy-preserving and communication-efficient attack detection framework, known as FedDiSC.
We put forward a representation learning-based Deep Auto-Encoder network to accurately detect power system and cybersecurity anomalies.
To adapt our proposed framework to the timeliness of real-world cyberattack detection in SGs, we leverage the use of a gradient privacy-preserving quantization scheme known as DP-SIGNSGD.
arXiv Detail & Related papers (2023-04-07T13:43:57Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - DER Forecast using Privacy Preserving Federated Learning [0.0]
A distributed machine learning approach, Federated Learning, is proposed to carry out DER forecasting using a network of IoT nodes.
We consider a simulation study which includes 1000 DERs, and show that our method leads to an accurate prediction of preserve consumer privacy.
arXiv Detail & Related papers (2021-07-07T14:25:43Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.