論文の概要: Diabetic Retinopathy Detection Using Quantum Transfer Learning
- arxiv url: http://arxiv.org/abs/2405.01734v1
- Date: Thu, 2 May 2024 21:09:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 14:24:53.206291
- Title: Diabetic Retinopathy Detection Using Quantum Transfer Learning
- Title(参考訳): 量子伝達学習を用いた糖尿病網膜症検出
- Authors: Ankush Jain, Rinav Gupta, Jai Singhal,
- Abstract要約: 糖尿病患者の合併症である糖尿病網膜症(DR)は、網膜に発生する病変により視力障害を引き起こすことがある。
本稿では,DR検出のためのハイブリッド量子トランスファー学習手法を提案する。
その結果,ResNet-18では97%の精度が得られた。
- 参考スコア(独自算出の注目度): 2.724141845301679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetic Retinopathy (DR), a prevalent complication in diabetes patients, can lead to vision impairment due to lesions formed on the retina. Detecting DR at an advanced stage often results in irreversible blindness. The traditional process of diagnosing DR through retina fundus images by ophthalmologists is not only time-intensive but also expensive. While classical transfer learning models have been widely adopted for computer-aided detection of DR, their high maintenance costs can hinder their detection efficiency. In contrast, Quantum Transfer Learning offers a more effective solution to this challenge. This approach is notably advantageous because it operates on heuristic principles, making it highly optimized for the task. Our proposed methodology leverages this hybrid quantum transfer learning technique to detect DR. To construct our model, we utilize the APTOS 2019 Blindness Detection dataset, available on Kaggle. We employ the ResNet-18, ResNet34, ResNet50, ResNet101, ResNet152 and Inception V3, pre-trained classical neural networks, for the initial feature extraction. For the classification stage, we use a Variational Quantum Classifier. Our hybrid quantum model has shown remarkable results, achieving an accuracy of 97% for ResNet-18. This demonstrates that quantum computing, when integrated with quantum machine learning, can perform tasks with a level of power and efficiency unattainable by classical computers alone. By harnessing these advanced technologies, we can significantly improve the detection and diagnosis of Diabetic Retinopathy, potentially saving many from the risk of blindness. Keywords: Diabetic Retinopathy, Quantum Transfer Learning, Deep Learning
- Abstract(参考訳): 糖尿病患者の合併症である糖尿病網膜症(DR)は、網膜に発生する病変により視力障害を引き起こすことがある。
進行期におけるDRの検出は、しばしば不可逆的な盲目を引き起こす。
眼科医による網膜基底画像からDRを診断する従来のプロセスは、時間集約的なだけでなく、高価なものでもある。
従来の移動学習モデルはコンピュータ支援によるDRの検出に広く採用されているが、その高いメンテナンスコストは検出効率を損なう可能性がある。
対照的に、Quantum Transfer Learningはこの課題に対してより効果的なソリューションを提供する。
このアプローチはヒューリスティックな原則に基づいており、タスクに高度に最適化されているため、特に有利である。
提案手法では,このハイブリッド量子トランスファー学習手法を用いてDRを検出する。
初期特徴抽出には、ResNet-18、ResNet34、ResNet50、ResNet101、ResNet152、Inception V3が使用される。
分類段階では変分量子分類器を用いる。
我々のハイブリッド量子モデルは、ResNet-18で97%の精度で顕著な結果を示した。
これは、量子コンピューティングが量子機械学習と統合されると、古典的なコンピュータだけでは達成できないレベルのパワーと効率でタスクを実行できることを示している。
これらの高度な技術を活用することで、糖尿病網膜症の検出と診断を大幅に改善することができ、視覚障害のリスクから多くの人を救える可能性がある。
キーワード:糖尿病網膜症、量子伝達学習、ディープラーニング
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Towards Transfer Learning for Large-Scale Image Classification Using
Annealing-based Quantum Boltzmann Machines [7.106829260811707]
本稿では,Quantum Annealing (QA) を用いた画像分類手法を提案する。
本稿では,アニール型量子ボルツマンマシンをハイブリッド量子古典パイプラインの一部として用いることを提案する。
提案手法は,テスト精度とAUC-ROC-Scoreの点で,古典的ベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2023-11-27T16:07:49Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
本稿では,知識蒸留を用いた古典的ニューラルネットワークから量子ニューラルネットワークへ知識を伝達する新しい手法を提案する。
我々は、LeNetやAlexNetのような古典的畳み込みニューラルネットワーク(CNN)アーキテクチャを教師ネットワークとして活用する。
量子モデルは、MNISTデータセットで0.80%、より複雑なFashion MNISTデータセットで5.40%の平均精度改善を達成する。
論文 参考訳(メタデータ) (2023-11-23T05:06:43Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
糖尿病網膜症(英: Diabetic Retinopathy, DR)は、糖尿病において網膜に存在する血管網を損傷する障害である。
経験豊富な臨床医は、疾患の特定に使用される画像中の腫瘍を識別する必要があるため、カラー・ファンドス画像を用いてDR診断を行うのにしばらく時間がかかる可能性がある。
論文 参考訳(メタデータ) (2023-04-29T16:11:34Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Blindness (Diabetic Retinopathy) Severity Scale Detection [0.0]
糖尿病網膜症(英: Diabetic retinopathy, DR)は、糖尿病の重篤な合併症である。
DRのタイムリーな診断と治療は、視力の喪失を避けるために重要である。
本稿では,網膜基底画像の自動スクリーニングのための新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-04T11:31:15Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis
and Uncertainty Quantification [0.0]
糖尿病網膜症 (Diabetes Mellitus) は糖尿病の微小血管合併症の1つである。
コナールニューラルネットワークに基づく計算モデルは、眼底画像を用いたDRの自動検出技術の現状を表す。
本稿では,DR診断と不確実性定量化のためのハイブリッドディープラーニング・ガウス法を提案する。
論文 参考訳(メタデータ) (2020-07-29T04:10:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。