Conformal Prediction for Natural Language Processing: A Survey
- URL: http://arxiv.org/abs/2405.01976v1
- Date: Fri, 3 May 2024 10:00:45 GMT
- Title: Conformal Prediction for Natural Language Processing: A Survey
- Authors: Margarida M. Campos, António Farinhas, Chrysoula Zerva, Mário A. T. Figueiredo, André F. T. Martins,
- Abstract summary: Conformal prediction is emerging as a theoretically sound and practically useful framework.
Its model-agnostic and distribution-free nature makes it particularly promising to address the current shortcomings of NLP systems.
This paper provides a comprehensive survey of conformal prediction techniques, their guarantees, and existing applications in NLP.
- Score: 23.638214012459425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid proliferation of large language models and natural language processing (NLP) applications creates a crucial need for uncertainty quantification to mitigate risks such as hallucinations and to enhance decision-making reliability in critical applications. Conformal prediction is emerging as a theoretically sound and practically useful framework, combining flexibility with strong statistical guarantees. Its model-agnostic and distribution-free nature makes it particularly promising to address the current shortcomings of NLP systems that stem from the absence of uncertainty quantification. This paper provides a comprehensive survey of conformal prediction techniques, their guarantees, and existing applications in NLP, pointing to directions for future research and open challenges.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - On Uncertainty In Natural Language Processing [2.5076643086429993]
This thesis studies how uncertainty in natural language processing can be characterized from a linguistic, statistical and neural perspective.
We propose a method for calibrated sampling in natural language generation based on non-exchangeable conformal prediction.
Lastly, we develop an approach to quantify confidence in large black-box language models using auxiliary predictors.
arXiv Detail & Related papers (2024-10-04T14:08:02Z) - ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees [68.33498595506941]
We introduce a novel uncertainty measure based on self-consistency theory.
We then develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the CP algorithm.
Empirical evaluations indicate that our uncertainty measure outperforms prior state-of-the-art methods.
arXiv Detail & Related papers (2024-06-29T17:33:07Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Uncertainty in Natural Language Processing: Sources, Quantification, and
Applications [56.130945359053776]
We provide a comprehensive review of uncertainty-relevant works in the NLP field.
We first categorize the sources of uncertainty in natural language into three types, including input, system, and output.
We discuss the challenges of uncertainty estimation in NLP and discuss potential future directions.
arXiv Detail & Related papers (2023-06-05T06:46:53Z) - Conformal Prediction with Large Language Models for Multi-Choice
Question Answering [7.049780432343948]
We find that the uncertainty estimates from conformal prediction are tightly correlated with prediction accuracy.
This work contributes towards more trustworthy and reliable usage of large language models in safety-critical situations.
arXiv Detail & Related papers (2023-05-28T15:26:10Z) - Conformal Methods for Quantifying Uncertainty in Spatiotemporal Data: A
Survey [0.0]
In high-risk settings, it is important that a model produces uncertainty to reflect its own confidence and avoid failures.
In this paper we survey recent works on uncertainty (UQ) for deep learning, in particular distribution-free Conformal Prediction method for its mathematical and wide applicability.
arXiv Detail & Related papers (2022-09-08T06:08:48Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.