論文の概要: Are Biological Systems More Intelligent Than Artificial Intelligence?
- arxiv url: http://arxiv.org/abs/2405.02325v4
- Date: Thu, 23 Jan 2025 05:24:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 19:43:35.727472
- Title: Are Biological Systems More Intelligent Than Artificial Intelligence?
- Title(参考訳): 生物システムは人工知能よりも知性が高いか?
- Authors: Michael Timothy Bennett,
- Abstract要約: 我々はインテリジェンスを適応性として捉え、因果学習の数学的フォーマリズムを用いてこの問題を探求する。
生物学的自己組織化のスケールフリー、動的、ボトムアップアーキテクチャを正式に示す。
我々は、集団が厳密に拘束されているときにがんに類似した状態が生じることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Are biological self-organising systems more `intelligent' than artificial intelligence? If so, why? We frame intelligence as adaptability, and explore this question using a mathematical formalism of causal learning. We compare systems by how they delegate control, illustrating how this applies with examples of computational, biological, human organisational and economic systems. We formally show the scale-free, dynamic, bottom-up architecture of biological self-organisation allows for more efficient adaptation than the static top-down architecture typical of computers, because adaptation can take place at lower levels of abstraction. Artificial intelligence rests on a static, human-engineered `stack'. It only adapts at high levels of abstraction. To put it provocatively, a static computational stack is like an inflexible bureaucracy. Biology is more `intelligent' because it delegates adaptation down the stack. We call this multilayer-causal-learning. It inherits a flaw of biological systems. Cells become cancerous when isolated from the collective informational structure, reverting to primitive transcriptional behaviour. We show states analogous to cancer occur when collectives are too tightly constrained. To adapt to adverse conditions control should be delegated to the greatest extent, like the doctrine of mission-command. Our result shows how to design more robust systems and lays a mathematical foundation for future empirical research.
- Abstract(参考訳): 生物学的自己組織化システムは人工知能よりも知性が高いか?
もしそうなら、なぜ?
我々はインテリジェンスを適応性として捉え、因果学習の数学的フォーマリズムを用いてこの問題を探求する。
我々は、制御の委譲方法によるシステムの比較を行い、これを計算、生物学的、人間の組織的、経済的なシステムの例と比較する。
生物学的自己組織化のスケールフリーでダイナミックなボトムアップアーキテクチャは、コンピュータの典型的な静的トップダウンアーキテクチャよりも、より効率的な適応を可能にします。
人工知能は、静的で人間工学的な‘スタック’の上に置かれる。
高レベルの抽象化にのみ適応します。
言い換えれば、静的な計算スタックは柔軟性のない官僚主義のようだ。
スタックへの適応を委譲するため、生物学はより「知的な」ものである。
これを多層因果学習(multilayer-causal-learning)と呼ぶ。
生物学的システムの欠陥を継承する。
細胞は集団的な情報構造から単離され、原始的な転写行動に戻ると癌になる。
集団が厳密に拘束されすぎると、がんに類似した状態が生じることを示す。
悪条件に適応するためには、ミッションコマンドの原則のように、制御を最大限に委譲する必要がある。
この結果は、より堅牢なシステムの設計方法を示し、将来の実証研究の数学的基盤を築き上げている。
関連論文リスト
- Oracle-Efficient Reinforcement Learning for Max Value Ensembles [7.404901768256101]
大または無限の状態空間における強化学習(RL)は、理論上、実験的に困難である。
この作業では、$textitmax-following Policy$と競合することを目指しています。
我々の主な成果は、構成ポリシーのみにアクセスすると、最大フォローポリシーと競合する効率的なアルゴリズムである。
論文 参考訳(メタデータ) (2024-05-27T01:08:23Z) - Bi-Level Offline Policy Optimization with Limited Exploration [1.8130068086063336]
我々は、固定された事前コンパイルされたデータセットに基づいて良いポリシーを学習しようとするオフライン強化学習(RL)について研究する。
ポリシー(上層)と値関数(下層)の階層的相互作用をモデル化する2レベル構造化ポリシー最適化アルゴリズムを提案する。
我々は、オフラインRLのための合成、ベンチマーク、実世界のデータセットを混合して評価し、最先端の手法と競合することを示す。
論文 参考訳(メタデータ) (2023-10-10T02:45:50Z) - When is Agnostic Reinforcement Learning Statistically Tractable? [76.1408672715773]
エンフスパンニング容量と呼ばれる新しい複雑性測度は、設定された$Pi$にのみ依存し、MDPダイナミクスとは独立である。
我々は、学習するためにスーパーポリノミカルな数のサンプルを必要とする制限付きスパンリング能力を持つポリシークラス$Pi$が存在することを示した。
これにより、生成的アクセスとオンラインアクセスモデルの間の学習可能性の驚くほどの分離が明らかになる。
論文 参考訳(メタデータ) (2023-10-09T19:40:54Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
本論文は,事前収集した観測値を利用して最適な個別化決定規則を学習するオフライン政策学習について検討する。
既存の政策学習法は、一様重なりの仮定、すなわち、全ての個々の特性に対する全ての作用を探索する正当性は、境界を低くしなければならない。
我々は,点推定の代わりに低信頼度境界(LCB)を最適化する新しいアルゴリズムであるPPLを提案する。
論文 参考訳(メタデータ) (2022-12-19T22:43:08Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Chaos is a Ladder: A New Theoretical Understanding of Contrastive
Learning via Augmentation Overlap [64.60460828425502]
コントラスト学習の下流性能に関する新たな保証を提案する。
我々の新しい理論は、攻撃的なデータ強化の下で、異なるクラス内サンプルのサポートがより重なり合うという知見に基づいている。
本稿では、下流の精度とよく一致した教師なしモデル選択距離ARCを提案する。
論文 参考訳(メタデータ) (2022-03-25T05:36:26Z) - Divide-and-Conquer Hard-thresholding Rules in High-dimensional
Imbalanced Classification [1.0312968200748118]
高次元の線形判別分析(LDA)における不均衡クラスサイズの影響について検討した。
マイノリティ・クラスと呼ばれる1つのクラスのデータの不足により、LDAはマイノリティ・クラスを無視し、最大誤分類率を得ることを示す。
そこで本研究では,不等式化率の大きな差を低減させる分割・対数法に基づくハードコンカレンスルールの新たな構成法を提案する。
論文 参考訳(メタデータ) (2021-11-05T07:44:28Z) - Is Pessimism Provably Efficient for Offline RL? [104.00628430454479]
優先度を収集したデータセットに基づいて最適なポリシーを学ぶことを目的としたオフライン強化学習(RL)について検討する。
ペナルティ関数として不確かさ量化器を組み込んだ値反復アルゴリズム(pevi)の悲観的変種を提案する。
論文 参考訳(メタデータ) (2020-12-30T09:06:57Z) - Hierarchically Decoupled Imitation for Morphological Transfer [95.19299356298876]
形態学的に単純なエージェントから学習情報を転送することで、より複雑なエージェントのサンプル効率を大幅に向上させることができることを示す。
まず、より単純なエージェントの低レベルを模倣するために複雑なエージェントの低レベルをインセンティブ化すると、ゼロショット高レベル転送が大幅に改善されることを示す。
第2に,高レベルのKL正規化学習が学習を安定させ,モデム崩壊を防ぐことを示す。
論文 参考訳(メタデータ) (2020-03-03T18:56:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。