論文の概要: Performance Upper Bound of the Grover-Mixer Quantum Alternating Operator Ansatz
- arxiv url: http://arxiv.org/abs/2405.03173v1
- Date: Mon, 6 May 2024 05:47:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:45:09.794240
- Title: Performance Upper Bound of the Grover-Mixer Quantum Alternating Operator Ansatz
- Title(参考訳): グラバーミクサー量子交互演算子アンザッツの性能上界
- Authors: Ningyi Xie, Jiahua Xu, Tiejin Chen, Yoshiyuki Saito, Nobuyoshi Asai, Dongsheng Cai,
- Abstract要約: Quantum Alternating Operator Ansatz (QAOA) は最適化問題を解くために設計された量子アルゴリズムの一分野である。
特定の変種であるGrover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA)は、等価な目的値を共有する状態間で均一な振幅を保証する。
GM-QAOAは,確率サンプリングの2次的向上を実現し,一貫した性能を維持するために,問題サイズと指数関数的にスケールする回路深度を必要とすることを示す。
- 参考スコア(独自算出の注目度): 3.6779367026247627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Alternating Operator Ansatz (QAOA) represents a branch of quantum algorithms designed for solving combinatorial optimization problems. A specific variant, the Grover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA), ensures uniform amplitude across states that share equivalent objective values. This property makes the algorithm independent of the problem structure, focusing instead on the distribution of objective values within the problem. In this work, we prove the probability upper bound for measuring a computational basis state from a GM-QAOA circuit with a given depth, which is a critical factor in QAOA cost. From this, we derive the upper bounds for the probability of sampling an optimal solution and for the approximation ratio of maximum optimization problems, based on the objective value distribution. Using numerical analysis, we link the distribution to the problem size and build the regression models that relate the problem size, QAOA depth, and performance upper bound. Our results suggest that the GM-QAOA provides a quadratic enhancement in sampling probability and requires circuit depth that scales exponentially with problem size to maintain consistent performance.
- Abstract(参考訳): QAOA(Quantum Alternating Operator Ansatz)は、組合せ最適化問題の解法として設計された量子アルゴリズムの一分野である。
特定の変種であるGrover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA)は、等価な目的値を共有する状態間で均一な振幅を保証する。
この性質は、アルゴリズムを問題構造から独立させ、代わりに問題内の目的値の分布に焦点を当てる。
本研究では,所与の深さを持つGM-QAOA回路から計算基底状態を測定する確率上限を証明し,これはQAOAコストの重要な要因である。
このことから、最適解をサンプリングする確率と、目的値分布に基づく最大最適化問題の近似比の上限を導出する。
数値解析により,問題の大きさ,QAOA深度,性能上界を関連づけた回帰モデルを構築した。
この結果から, GM-QAOAはサンプリング確率を2次的に向上させ, 回路深度を問題サイズとともに指数関数的に拡大して一貫した性能を維持する必要があることが示唆された。
関連論文リスト
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
量子近似最適化アルゴリズム(QAOA)とその変種は、最適化問題に対処する大きな可能性を示している。
良好な性能を実現するために必要な回路深度は問題固有であり、しばしば現在の量子デバイスの最大容量を超える。
ミキサジェネレータネットワーク (MG-Net) は, 最適ミキサハミルトニアンを動的に定式化するための統合ディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2024-09-27T12:28:18Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
我々は、QUBO問題として表されるグラフ上の最大傾きを見つける量子D波アンナーの能力を解析する。
本稿では, 相補的な最大独立集合問題に対する分解アルゴリズムと, ノード数, 傾き数, 密度, 接続率, 解サイズの他のノード数に対する比を制御するグラフ生成アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T04:40:05Z) - Analytical results for the Quantum Alternating Operator Ansatz with Grover Mixer [0.0]
本稿では,問題ハミルトニアンスペクトルに付随する確率分布に依存する予測値の解析式として,GM-QAOAを統計的に解析する手法を提案する。
我々はこの分析を、Grover-based QAOAと呼ぶGrovermixerを用いて、より一般的なQAOAの文脈に拡張する。
論文 参考訳(メタデータ) (2024-01-19T23:17:08Z) - Variational quantum algorithm-preserving feasible space for solving the
uncapacitated facility location problem [3.3682090109106446]
本稿では,変分量子アルゴリズムで実現可能な空間(VQA-PFS)アンサッツを提案する。
このアンザッツは制約変数に混合演算子を適用し、非制約変数にハードウェア効率アンザッツ(HEA)を用いる。
その結果, VQA-PFSは成功確率を著しく向上し, より高速な収束を示すことがわかった。
論文 参考訳(メタデータ) (2023-12-12T01:36:49Z) - Problem-Size Independent Angles for a Grover-Driven Quantum Approximate
Optimization Algorithm [0.0]
本稿では,Grover-driven,QAOA-prepared状態下でのハミルトニアンの期待値の計算をシステムサイズとは無関係に行うことができることを示す。
このような計算は、大きな問題の大きさの限界において、QAOAにおける角度のパフォーマンスと予測可能性に関する洞察を与えるのに役立つ。
論文 参考訳(メタデータ) (2022-08-22T17:18:25Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Numerical Evidence for Exponential Speed-up of QAOA over Unstructured
Search for Approximate Constrained Optimization [0.0]
本稿では,Grover-style unstructured searchによるQAOAの指数的高速化の証拠を示す。
以上の結果から,QAOA性能の最大化にはミキサーと位相分離器の選択が必要であることが示唆された。
論文 参考訳(メタデータ) (2022-02-01T18:39:52Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
形状対応を見つけることは、NP-hard quadratic assignment problem (QAP)として定式化できる。
本稿では,アルファ拡大アルゴリズムに触発されたQAPの反復量子法Q-Matchを提案する。
Q-Match は、実世界の問題にスケールできるような長文対応のサブセットにおいて、反復的に形状マッチング問題に適用できる。
論文 参考訳(メタデータ) (2021-05-06T17:59:38Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
パフォーマンスバウンダリの定量化は、QAOAが現実のアプリケーションの解決に有効である可能性についての洞察を提供する。
QAOA は、ほとんどのグラフに対して有界な Goemans-Williamson 近似比を超える。
得られたデータセットは、QAOAパフォーマンスに関する経験的バウンダリを確立するためのベンチマークとして提示される。
論文 参考訳(メタデータ) (2021-02-12T23:12:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。