論文の概要: ERATTA: Extreme RAG for Table To Answers with Large Language Models
- arxiv url: http://arxiv.org/abs/2405.03963v2
- Date: Tue, 14 May 2024 15:43:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 18:22:42.307667
- Title: ERATTA: Extreme RAG for Table To Answers with Large Language Models
- Title(参考訳): ERATTA: 大規模言語モデルで答えるテーブルのための極端なRAG
- Authors: Sohini Roychowdhury, Marko Krema, Anvar Mahammad, Brian Moore, Arijit Mukherjee, Punit Prakashchandra,
- Abstract要約: 検索拡張現実(RAG)を備えた大規模言語モデル(LLM)は、スケーラブルな生成AIソリューションに最適な選択肢である。
本研究では,データ認証,ユーザクエリルーティング,データ検索,カスタムプロンプトなどを実現するために,複数のLCMを起動する独自のLCMシステムを提案する。
1つのプロンプトはユーザ間認証を管理し、3つのプロンプトでルーティングし、データをフェッチし、カスタマイズ可能な自然言語応答を生成する。
- 参考スコア(独自算出の注目度): 1.3318204310917532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) with retrieval augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions in the recent past. However, the choice of use-cases that incorporate RAG with LLMs have been either generic or extremely domain specific, thereby questioning the scalability and generalizability of RAG-LLM approaches. In this work, we propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user query routing, data retrieval and custom prompting for question answering capabilities from data tables that are highly varying and large in size. Our system is tuned to extract information from Enterprise-level data products and furnish real time responses under 10 seconds. One prompt manages user-to-data authentication followed by three prompts to route, fetch data and generate a customizable prompt natural language responses. Additionally, we propose a five metric scoring module that detects and reports hallucinations in the LLM responses. Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains. Extensions to the proposed extreme RAG architectures can enable heterogeneous source querying using LLMs.
- Abstract(参考訳): 検索拡張現実(RAG)を備えた大規模言語モデル(LLM)は、近年、スケーラブルな生成AIソリューションに最適な選択肢となっている。
しかしながら、RAGをLLMに組み込んだユースケースの選択は、汎用的あるいは極端にドメイン特化されているため、RAG-LLMアプローチのスケーラビリティと一般化性に疑問が呈されている。
本研究では,データ認証,ユーザクエリルーティング,データ検索,カスタムプロンプトなどを実現するために,高度に可変かつ大規模なデータテーブルから複数のLSMを起動する,ユニークなLCMベースのシステムを提案する。
当社のシステムは,エンタープライズレベルのデータ製品から情報を抽出し,リアルタイム応答を10秒以下で行うように調整されている。
1つのプロンプトは、ユーザ間認証を管理し、3つのプロンプトでルーティングし、データをフェッチし、カスタマイズ可能な自然言語応答を生成する。
さらに,LLM応答の幻覚を検知し,報告する5つの評価モジュールを提案する。
提案するシステムと評価基準は,持続可能性,財務状況,ソーシャルメディア領域において,数百のユーザクエリに対して,90%以上の信頼性スコアを達成している。
提案した極端なRAGアーキテクチャの拡張は、LLMを用いた異種ソースクエリを可能にする。
関連論文リスト
- mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
ドメインドリフト下でのLarge Language Models (LLM) を用いた抽出質問応答(EQA)について検討する。
パフォーマンスギャップを実証的に説明するための一連の実験を考案する。
論文 参考訳(メタデータ) (2024-09-27T05:06:43Z) - BERGEN: A Benchmarking Library for Retrieval-Augmented Generation [26.158785168036662]
Retrieval-Augmented Generationは、外部知識による大規模言語モデルの拡張を可能にする。
一貫性のないベンチマークは、アプローチを比較し、パイプライン内の各コンポーネントの影響を理解する上で大きな課題となる。
本研究では,RAGを体系的に評価するための基礎となるベストプラクティスと,RAG実験を標準化した再現可能な研究用ライブラリであるBERGENについて検討する。
論文 参考訳(メタデータ) (2024-07-01T09:09:27Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI [3.9773527114058855]
本稿では,大規模言語モデルの生成能力とベクトルデータベースの高速かつ正確な検索能力を組み合わせた新しい手法を提案する。
開発したGTR(Generative Text Retrieval)は,非構造化データと構造化データの両方に適用可能である。
改良されたモデルであるGenerative Tabular Text Retrieval (GTR-T) は、大規模データベースクエリの効率を実証した。
論文 参考訳(メタデータ) (2024-06-13T23:08:06Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。