Multiparameter regularization and aggregation in the context of polynomial functional regression
- URL: http://arxiv.org/abs/2405.04147v1
- Date: Tue, 7 May 2024 09:26:20 GMT
- Title: Multiparameter regularization and aggregation in the context of polynomial functional regression
- Authors: Elke R. Gizewski, Markus Holzleitner, Lukas Mayer-Suess, Sergiy Pereverzyev Jr., Sergei V. Pereverzyev,
- Abstract summary: We introduce an algorithm for multiple parameter regularization and present a theoretically grounded method for dealing with the associated parameters.
The efficacy of the proposed approach is assessed through evaluations on both synthetic and some real-world medical data, revealing promising results.
- Score: 2.1960518939650475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most of the recent results in polynomial functional regression have been focused on an in-depth exploration of single-parameter regularization schemes. In contrast, in this study we go beyond that framework by introducing an algorithm for multiple parameter regularization and presenting a theoretically grounded method for dealing with the associated parameters. This method facilitates the aggregation of models with varying regularization parameters. The efficacy of the proposed approach is assessed through evaluations on both synthetic and some real-world medical data, revealing promising results.
Related papers
- Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
We develop a nonparametric approximation approach that enables flexible posterior approximation for distributions with complicated structures.
Compared with widely-used nonparametrical inference methods, the proposed method is easy to implement and adaptive to various data structures.
Experiments demonstrate the efficiency of the proposed method in approximating complex posterior distributions and improving the performance of generative models with incomplete data.
arXiv Detail & Related papers (2024-03-10T20:22:06Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Functional Generalized Canonical Correlation Analysis for studying
multiple longitudinal variables [0.9208007322096533]
Functional Generalized Canonical Correlation Analysis (FGCCA) is a new framework for exploring associations between multiple random processes observed jointly.
We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components.
We present a use case on a longitudinal dataset and evaluate the method's efficiency in simulation studies.
arXiv Detail & Related papers (2023-10-11T09:21:31Z) - ParFam -- (Neural Guided) Symbolic Regression Based on Continuous Global Optimization [14.146976111782466]
We present our new approach ParFam to translate the discrete symbolic regression problem into a continuous one.
In combination with a global, this approach results in a highly effective method to tackle the problem of SR.
We also present an extension incorporating a pre-trained transformer network DL-ParFam to guide ParFam.
arXiv Detail & Related papers (2023-10-09T09:01:25Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet regression has emerged as a promising approach for regression analysis involving non-Euclidean response variables.
Our proposed framework combines the concepts of global Fr'echet regression and principal component regression, aiming to improve the efficiency and accuracy of the regression estimator.
arXiv Detail & Related papers (2023-05-16T08:37:54Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.