Practical Few-Atom Quantum Reservoir Computing
- URL: http://arxiv.org/abs/2405.04799v2
- Date: Tue, 28 Jan 2025 20:32:11 GMT
- Title: Practical Few-Atom Quantum Reservoir Computing
- Authors: Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh,
- Abstract summary: Quantum Reservoir Computing (QRC) harnesses quantum systems to tackle intricate computational problems with exceptional efficiency and minimized energy usage.
This paper presents a QRC framework that utilizes a minimalistic quantum reservoir, consisting of only a few two-level atoms within an optical cavity.
- Score: 0.0
- License:
- Abstract: Quantum Reservoir Computing (QRC) harnesses quantum systems to tackle intricate computational problems with exceptional efficiency and minimized energy usage. This paper presents a QRC framework that utilizes a minimalistic quantum reservoir, consisting of only a few two-level atoms within an optical cavity. The system is inherently scalable, as newly added atoms automatically couple with the existing ones through the shared cavity field. We demonstrate that the quantum reservoir outperforms traditional classical reservoir computing in both memory retention and nonlinear data processing through two tasks, namely the prediction of time-series data using the Mackey-Glass task and the classification of sine-square waveforms. Our results show significant performance improvements with an increasing number of atoms, facilitated by non-destructive, continuous quantum measurements and polynomial regression techniques. These findings confirm the potential of QRC as a practical and efficient solution to addressing complex computational challenges in quantum machine learning.
Related papers
- Minimalistic and Scalable Quantum Reservoir Computing Enhanced with Feedback [0.0]
Quantum Reservoir Computing (QRC) leverages quantum systems to perform complex computational tasks with exceptional efficiency and reduced energy consumption.
We introduce a minimalistic QRC framework utilizing only a few two-level atoms in a single-mode optical cavity, combined with continuous quantum measurements.
This framework fulfills QRCs objectives to minimize hardware size and energy consumption, marking a significant advancement in integrating quantum physics with machine learning technology.
arXiv Detail & Related papers (2024-12-06T23:44:46Z) - Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements.
We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array.
arXiv Detail & Related papers (2024-09-15T22:44:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
Several quantum machine learning algorithms that use quantum kernels as a measure of similarities between data have emerged to perform binary classification on datasets encoded as quantum states.
We propose new quantum circuits for the QKCs in which the number of qubits is reduced by one, and the circuit depth is reduced linearly with respect to the number of sample data.
We verify the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.
arXiv Detail & Related papers (2024-03-26T07:39:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Reservoir Computing Approach to Quantum State Measurement [0.0]
Reservoir computing is a resource-efficient solution to quantum measurement of superconducting multi-qubit systems.
We show how to operate this device to perform two-qubit state tomography and continuous parity monitoring.
arXiv Detail & Related papers (2020-11-19T04:46:15Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.