論文の概要: Open Source Language Models Can Provide Feedback: Evaluating LLMs' Ability to Help Students Using GPT-4-As-A-Judge
- arxiv url: http://arxiv.org/abs/2405.05253v1
- Date: Wed, 8 May 2024 17:57:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 13:45:01.157338
- Title: Open Source Language Models Can Provide Feedback: Evaluating LLMs' Ability to Help Students Using GPT-4-As-A-Judge
- Title(参考訳): オープンソース言語モデルによるフィードバック - GPT-4-As-A-Judgeを用いた学生支援能力の評価-
- Authors: Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto Hellas, Juho Leinonen, Paul Denny,
- Abstract要約: 大規模言語モデル(LLM)は、幅広いコンピューティングコンテキストにおけるフィードバックの自動生成に大きな可能性を示している。
しかし、学生の仕事をプロプライエタリなモデルに送ることのプライバシーと倫理的意味について懸念の声が上がっている。
このことは、教育におけるオープンソースのLLMの使用に大きな関心を呼んだが、そのようなオープンモデルが生み出すフィードバックの品質は、まだ検討されていない。
- 参考スコア(独自算出の注目度): 4.981275578987307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown great potential for the automatic generation of feedback in a wide range of computing contexts. However, concerns have been voiced around the privacy and ethical implications of sending student work to proprietary models. This has sparked considerable interest in the use of open source LLMs in education, but the quality of the feedback that such open models can produce remains understudied. This is a concern as providing flawed or misleading generated feedback could be detrimental to student learning. Inspired by recent work that has utilised very powerful LLMs, such as GPT-4, to evaluate the outputs produced by less powerful models, we conduct an automated analysis of the quality of the feedback produced by several open source models using a dataset from an introductory programming course. First, we investigate the viability of employing GPT-4 as an automated evaluator by comparing its evaluations with those of a human expert. We observe that GPT-4 demonstrates a bias toward positively rating feedback while exhibiting moderate agreement with human raters, showcasing its potential as a feedback evaluator. Second, we explore the quality of feedback generated by several leading open-source LLMs by using GPT-4 to evaluate the feedback. We find that some models offer competitive performance with popular proprietary LLMs, such as ChatGPT, indicating opportunities for their responsible use in educational settings.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いコンピューティングコンテキストにおけるフィードバックの自動生成に大きな可能性を示している。
しかし、学生の仕事をプロプライエタリなモデルに送ることのプライバシーと倫理的意味について懸念の声が上がっている。
このことは、教育におけるオープンソースのLLMの使用に大きな関心を呼んだが、そのようなオープンモデルが生み出すフィードバックの品質は、まだ検討されていない。
これは、欠陥や誤解を招くフィードバックを提供することが、学生の学習に有害な可能性があるという懸念である。
GPT-4 などの非常に強力な LLM を用いて,低消費電力モデルによる出力評価を行った最近の研究に触発されて,導入プログラミングコースからのデータセットを用いて,複数のオープンソースモデルによるフィードバックの質を自動解析する。
まず,GPT-4を自動評価装置として活用する可能性について,その評価を専門家と比べて検討する。
我々は, GPT-4が評価フィードバックに対するバイアスを示し, また, フィードバック評価者としての可能性を示した。
第2に, GPT-4 を用いて複数のオープンソース LLM が生成したフィードバックの質について検討した。
いくつかのモデルは、ChatGPTのような、人気のあるプロプライエタリなLLMと競合する性能を提供しており、教育環境での責任を負う機会を示している。
関連論文リスト
- Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
GPT-4oに基づくタスク分解評価フレームワークを提案し、新しいトレーニングデータセットを自動構築する。
我々は、GPT-4oの評価能力を7BオープンソースMLLM、MiniCPM-V-2.6に効果的に蒸留するための革新的なトレーニング戦略を設計する。
実験結果から,我々の蒸留したオープンソースMLLMは,現在のGPT-4oベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-11-23T08:06:06Z) - Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses [0.0]
本研究では,大規模言語モデル(LLM)が数学教育における自動フィードバックを促進する可能性を探究することを目的とする。
我々は,Llamaの数学版であるMistralを採用し,このモデルを用いて,中学校数学問題に対する生徒の回答と教師によるフィードバックのデータセットを活用することによって,学生の反応を評価する。
2人の教師の判断を生かして,評価精度とフィードバックの質を評価する。
論文 参考訳(メタデータ) (2024-10-29T16:57:45Z) - EasyJudge: an Easy-to-use Tool for Comprehensive Response Evaluation of LLMs [6.179084469089114]
本稿では,重要な言語モデル応答を評価するために開発された EasyJudge を提案する。
軽量で、正確で、効率的で、ユーザフレンドリで、デプロイや使用が容易な、直感的な視覚化インターフェースを備えている。
論文 参考訳(メタデータ) (2024-10-13T08:24:12Z) - Large Language Model as an Assignment Evaluator: Insights, Feedback, and Challenges in a 1000+ Student Course [49.296957552006226]
大規模言語モデル(LLM)を自動評価に用いることは,NLP研究において重要な評価手法となっている。
本報告では,1028人の大学生を対象に,GPT-4を自動課題評価装置として利用する方法について述べる。
論文 参考訳(メタデータ) (2024-07-07T00:17:24Z) - RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness [94.03511733306296]
我々は,MLLMを超GPT-4V信頼性のための完全なオープンソースパラダイムに整合させるフレームワークであるRLAIF-Vを紹介する。
RLAIF-Vは、高品質なフィードバックデータとオンラインフィードバック学習アルゴリズムを含む、2つの観点から、オープンソースフィードバックを最大限活用する。
実験により、RLAIF-Vは、他のタスクのパフォーマンスを犠牲にすることなく、モデルの信頼性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-05-27T14:37:01Z) - Language Models can Evaluate Themselves via Probability Discrepancy [38.54454263880133]
様々な大規模言語モデル(LLM)の有効性を評価するための自己評価手法ProbDiffを提案する。
テスト中のLSMを、初期応答と修正バージョンの間の確率差を計算するために独自に利用する。
以上の結果から, ProbDiff は GPT-4 に基づく評価結果と同等の結果を得た。
論文 参考訳(メタデータ) (2024-05-17T03:50:28Z) - Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
強化学習(RL)を用いた正当性と整合性の両方を最適化するフィードバック生成フレームワークを提案する。
具体的には、直接選好最適化(DPO)によるトレーニングのための拡張データセットにおいて、GPT-4のアノテーションを使用してフィードバックペアよりも好みを生成する。
論文 参考訳(メタデータ) (2024-03-02T20:25:50Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instructは、疑似参照でポイントワイズした批評を取得し、マルチパスプロンプトを通じてこれらの批評を修正できる。
CritiqueLLMは、ChatGPTとすべてのオープンソースベースラインを上回るように実証的に示されています。
論文 参考訳(メタデータ) (2023-11-30T16:52:42Z) - The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) [121.42924593374127]
我々は,最新のモデルであるGPT-4Vを分析し,LMMの理解を深める。
GPT-4Vは、任意にインターリーブされたマルチモーダル入力を処理するという前例のない能力により、強力なマルチモーダルジェネラリストシステムとなっている。
GPT-4Vの、入力画像に描かれた視覚マーカーを理解するユニークな能力は、新しい人間とコンピュータの相互作用方法をもたらす。
論文 参考訳(メタデータ) (2023-09-29T17:34:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。