Cross-resonance control of an oscillator with a fluxonium ancilla
- URL: http://arxiv.org/abs/2407.18351v1
- Date: Thu, 25 Jul 2024 19:34:09 GMT
- Title: Cross-resonance control of an oscillator with a fluxonium ancilla
- Authors: Guo Zheng, Simon Lieu, Emma L. Rosenfeld, Kyungjoo Noh, Connor T. Hann,
- Abstract summary: A CD gate scheme with fluxonium as the ancilla has been experimentally demonstrated to have a large noise bias and millisecond-level lifetimes.
We numerically demonstrate CD gates with unitary fidelity exceeding 99.9% and gate times of hundreds of nanoseconds.
- Score: 0.46603287532620735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The conditional displacement (CD) gate between an oscillator and a discrete-variable ancilla plays a key role in quantum information processing tasks, such as enabling universal control of the oscillator and longitudinal readout of the qubit. However, the gate is unprotected against the propagation of ancilla decay errors and hence not fault-tolerant. Here, we propose a CD gate scheme with fluxonium as the ancilla, which has been experimentally demonstrated to have a large noise bias and millisecond-level lifetimes. The proposed gate is applied cross-resonantly by modulating the external flux of the fluxonium at the frequency of the target oscillator, which requires minimal hardware overhead and does not increase sensitivity to decoherence mechanisms like dephasing. We further provide a perturbative description of the gate mechanism and identify the error budget. Additionally, we develop an approximate procedure for choosing device and gate parameters that optimizes gate performance. Following the procedure for multiple sets of fluxonium parameters from the literature, we numerically demonstrate CD gates with unitary fidelity exceeding 99.9% and gate times of hundreds of nanoseconds.
Related papers
- High-performance conditional-driving gate for Kerr parametric oscillator qubits [0.0]
We show that an AC-Zeeman shift due to the flux pulse for the gate operation largely affects the gate performance.
We propose a method to cancel this undesirable effect.
We numerically demonstrate a conditional-driving gate with average fidelity exceeding 99.9$%$ twice faster than that without the proposed method.
arXiv Detail & Related papers (2024-10-01T09:58:52Z) - Microscopic parametrizations for gate set tomography under coloured noise [0.0]
We show that a microscopic parametrization of quantum gates under time-correlated noise on the driving phase reduces the required resources.
We discuss the minimal parametrizations of the gate set that include the effect of finite correlation times and non-Markovian quantum evolutions.
arXiv Detail & Related papers (2024-07-16T09:39:52Z) - Self-correcting GKP qubit and gates in a driven-dissipative circuit [1.8960192929603623]
We propose a circuit architecture for a dissipatively error-corrected GKP qubit.
The device consists of a high-impedance LC circuit coupled to a Josephson junction and a resistor via a controllable switch.
We show that the qubit supports native self-correcting single-qubit Clifford gates, where dissipative error-correction of control noise leads to exponential suppression of gate infidelity.
arXiv Detail & Related papers (2024-05-09T10:51:48Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Microwave-activated gates between a fluxonium and a transmon qubit [59.95978973946985]
We propose and analyze two types of microwave-activated gates between a fluxonium and a transmon qubit.
For a medium-frequency fluxonium qubit, the transmon-fluxonium system allows for a cross-resonance effect mediated by the higher levels of the fluxonium.
A fast microwave CPHASE gate can be implemented using the higher levels of the fluxonium.
arXiv Detail & Related papers (2022-06-13T14:34:11Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Fast multi-qubit global-entangling gates without individual addressing
of trapped ions [11.209327346836222]
We propose and study ways speeding up the entangling operations in the trapped ions system with high fidelity.
First, we find a scheme to increase the speed of a two-qubit gate without the limitation of trap frequency, which was considered as the fundamental limit.
Second, we study the fast gate scheme for entangling more than two qubits simultaneously.
arXiv Detail & Related papers (2022-01-18T13:20:42Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Error analysis in suppression of unwanted qubit interactions for a
parametric gate in a tunable superconducting circuit [0.0]
We experimentally demonstrate a parametric iSWAP gate in a superconducting circuit based on a tunable coupler.
We implement the twoqubit iSWAP gate by applying a fast-flux bias modulation pulse on the coupler to turn on parametric exchange interaction between computational qubits.
arXiv Detail & Related papers (2020-03-19T02:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.