Self-correcting GKP qubit and gates in a driven-dissipative circuit
- URL: http://arxiv.org/abs/2405.05671v2
- Date: Thu, 10 Apr 2025 16:04:24 GMT
- Title: Self-correcting GKP qubit and gates in a driven-dissipative circuit
- Authors: Frederik Nathan, Liam O'Brien, Kyungjoo Noh, Matthew H. Matheny, Arne L. Grimsmo, Liang Jiang, Gil Refael,
- Abstract summary: We show that a self-correcting GKP qubit can be realized with a high-impedance LC circuit coupled to a resistor and a Josephson junction via a controllable switch.<n>We show the qubit supports exponentially robust single-qubit Clifford gates, implemented via appropriate control of the switch, and readout/initialization via supercurrent measurement.
- Score: 1.8960192929603623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that a self-correcting GKP qubit can be realized with a high-impedance LC circuit coupled to a resistor and a Josephson junction via a controllable switch. When activating the switch in a particular stepwise pattern, the resonator relaxes into a subspace of GKP states that encode a protected qubit. Under continued operation, the resistor dissipatively error-corrects the qubit against bit flips and decoherence by absorbing noise-induced entropy. We show that this leads to an exponential enhancement of coherence time (T1 and T2), even in the presence of extrinsic noise, imperfect control, and device parameter variations. We show the qubit supports exponentially robust single-qubit Clifford gates, implemented via appropriate control of the switch, and readout/initialization via supercurrent measurement. The qubit's self-correcting properties allows it to operate at ~1K temperatures and resonator Q factors down to ~1000 for realistic parameters, and make it amenable to parallel control through global control signals. We discuss how the effects of quasiparticle poisoning -- potentially, though not necessarily, a limiting factor -- might be mitigated. We finally demonstrate that a related device supports a self-correcting magic T gate.
Related papers
- Cross-resonance control of an oscillator with a fluxonium ancilla [0.46603287532620735]
A CD gate scheme with fluxonium as the ancilla has been experimentally demonstrated to have a large noise bias and millisecond-level lifetimes.
We numerically demonstrate CD gates with unitary fidelity exceeding 99.9% and gate times of hundreds of nanoseconds.
arXiv Detail & Related papers (2024-07-25T19:34:09Z) - Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - Designing high-fidelity two-qubit gates between fluxonium qubits [0.19528996680336308]
We propose a two-qubit gate between fluxonium qubits for minimal error, speed, and control simplicity.
Our architecture consists of two fluxoniums coupled via a linear resonator.
We predict an open-system average CZ gate infidelity of $1.86 times 10-4$ in 70ns.
arXiv Detail & Related papers (2024-03-12T01:56:21Z) - Charge-parity switching effects and optimisation of transmon-qubit design parameters [0.0]
We identify optimal ranges for qubit design parameters, grounded in comprehensive noise modeling.
A charge-parity switch can be the dominant quasiparticle-related error source of a two-qubit gate.
We present a performance metric for quantum circuit execution.
arXiv Detail & Related papers (2023-09-29T12:05:27Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - A GKP qubit protected by dissipation in a high-impedance superconducting circuit driven by a microwave frequency comb [0.0]
We propose a novel approach to generate, protect and control GKP qubits.
It employs a microwave frequency comb parametrically modulating a Josephson circuit to enforce a dissipative dynamics of a high impedance circuit mode.
The encoded GKP qubit is robustly protected against all dominant decoherence channels plaguing superconducting circuits but quasi-particle poisoning.
arXiv Detail & Related papers (2023-04-04T00:20:02Z) - Fast universal control of a flux qubit via exponentially tunable
wave-function overlap [0.0]
We propose a flux qubit variation which enjoys a tunable level of protection against relaxation to resolve this outstanding issue.
Our qubit design, the double-shunted flux qubit (DSFQ), realizes a generic double-well potential through its three junction ring geometry.
arXiv Detail & Related papers (2023-03-02T09:33:40Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z) - Error analysis in suppression of unwanted qubit interactions for a
parametric gate in a tunable superconducting circuit [0.0]
We experimentally demonstrate a parametric iSWAP gate in a superconducting circuit based on a tunable coupler.
We implement the twoqubit iSWAP gate by applying a fast-flux bias modulation pulse on the coupler to turn on parametric exchange interaction between computational qubits.
arXiv Detail & Related papers (2020-03-19T02:26:17Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.