FusionTransNet for Smart Urban Mobility: Spatiotemporal Traffic Forecasting Through Multimodal Network Integration
- URL: http://arxiv.org/abs/2405.05786v1
- Date: Thu, 9 May 2024 14:09:36 GMT
- Title: FusionTransNet for Smart Urban Mobility: Spatiotemporal Traffic Forecasting Through Multimodal Network Integration
- Authors: Binwu Wang, Yan Leng, Guang Wang, Yang Wang,
- Abstract summary: FusionTransNet is a framework designed for Origin-Destination (OD) flow predictions within and smart urban transportation systems.
The framework contains three core components: the Intra-modal Learning Module, the Inter-modal Learning Module, and the Prediction Decoder.
- Score: 11.77238206600775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study develops FusionTransNet, a framework designed for Origin-Destination (OD) flow predictions within smart and multimodal urban transportation systems. Urban transportation complexity arises from the spatiotemporal interactions among various traffic modes. Motivated by analyzing multimodal data from Shenzhen, a framework that can dissect complicated spatiotemporal interactions between these modes, from the microscopic local level to the macroscopic city-wide perspective, is essential. The framework contains three core components: the Intra-modal Learning Module, the Inter-modal Learning Module, and the Prediction Decoder. The Intra-modal Learning Module is designed to analyze spatial dependencies within individual transportation modes, facilitating a granular understanding of single-mode spatiotemporal dynamics. The Inter-modal Learning Module extends this analysis, integrating data across different modes to uncover cross-modal interdependencies, by breaking down the interactions at both local and global scales. Finally, the Prediction Decoder synthesizes insights from the preceding modules to generate accurate OD flow predictions, translating complex multimodal interactions into forecasts. Empirical evaluations conducted in metropolitan contexts, including Shenzhen and New York, demonstrate FusionTransNet's superior predictive accuracy compared to existing state-of-the-art methods. The implication of this study extends beyond urban transportation, as the method for transferring information across different spatiotemporal graphs at both local and global scales can be instrumental in other spatial systems, such as supply chain logistics and epidemics spreading.
Related papers
- DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
We introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout.
DeepInteraction++ is a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder.
Experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks.
arXiv Detail & Related papers (2024-08-09T14:04:21Z) - Traffic Prediction considering Multiple Levels of Spatial-temporal Information: A Multi-scale Graph Wavelet-based Approach [3.343804744266258]
This study proposes a graph wavelet temporal convolution network (MSGWTCN) to predict the traffic states in complex transportation networks.
Two real-world datasets are used to investigate the model performance, including a highway network in Seattle and a dense road network of Manhattan in New York City.
arXiv Detail & Related papers (2024-06-18T20:05:47Z) - xMTrans: Temporal Attentive Cross-Modality Fusion Transformer for Long-Term Traffic Prediction [3.08580339590996]
We introduce a novel temporal attentive cross-modality transformer model for long-term traffic predictions, namely xMTrans.
We conduct experiments to evaluate our proposed model on traffic congestion and taxi demand predictions using real-world datasets.
arXiv Detail & Related papers (2024-05-08T06:29:26Z) - Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
We propose an innovative solution that merges Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) architecture to enhance the prediction of traffic flow dynamics.
A key revelation of our research is the feasibility of sampling training data for large traffic systems from simulations conducted on smaller traffic systems.
arXiv Detail & Related papers (2024-03-27T15:57:42Z) - Large-Scale Traffic Congestion Prediction based on Multimodal Fusion and
Representation Mapping [5.893431681364435]
It is one of the most important tasks to judge traffic congestion by analysing the congestion factors.
Traditional and machine-learning-based models have been introduced for predicting traffic congestion.
A novel end-to-end framework based on convolutional neural networks is proposed in this paper.
arXiv Detail & Related papers (2022-08-23T16:07:28Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Joint Demand Prediction for Multimodal Systems: A Multi-task
Multi-relational Spatiotemporal Graph Neural Network Approach [7.481812882780837]
This study proposes a multi-relational graph neural network (MRGNN) for multimodal demand prediction.
A multi-relational graph neural network (MRGNN) is introduced to capture cross-mode heterogeneous spatial dependencies.
Experiments are conducted using real-world datasets from New York City.
arXiv Detail & Related papers (2021-12-15T12:35:35Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.