論文の概要: Scalable physical source-to-field inference with hypernetworks
- arxiv url: http://arxiv.org/abs/2405.05981v1
- Date: Tue, 7 May 2024 10:54:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:45:54.530462
- Title: Scalable physical source-to-field inference with hypernetworks
- Title(参考訳): ハイパーネットを用いたスケーラブルな物理的ソース・ツー・フィールド推論
- Authors: Berian James, Stefan Pollok, Ignacio Peis, Jes Frellsen, Rasmus Bjørk,
- Abstract要約: 厳密な数値計算は計算複雑性$mathcalO(MtimesN)$のソース数または固定評価グリッドを持つ。
重力場や磁気源周辺での計算を補正する生成モデルを提案する。
- 参考スコア(独自算出の注目度): 7.570537619361624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a generative model that amortises computation for the field around e.g. gravitational or magnetic sources. Exact numerical calculation has either computational complexity $\mathcal{O}(M\times{}N)$ in the number of sources and field evaluation points, or requires a fixed evaluation grid to exploit fast Fourier transforms. Using an architecture where a hypernetwork produces an implicit representation of the field around a source collection, our model instead performs as $\mathcal{O}(M + N)$, achieves accuracy of $\sim\!4\%-6\%$, and allows evaluation at arbitrary locations for arbitrary numbers of sources, greatly increasing the speed of e.g. physics simulations. We also examine a model relating to the physical properties of the output field and develop two-dimensional examples to demonstrate its application. The code for these models and experiments is available at https://github.com/cmt-dtu-energy/hypermagnetics.
- Abstract(参考訳): 本稿では,重力場や磁気源周辺での計算を補正する生成モデルを提案する。
厳密な数値計算は計算複雑性$\mathcal{O}(M\times{}N)$のソース数とフィールド評価点数を持つか、高速フーリエ変換を利用するために固定された評価格子を必要とする。
ハイパーネットワークがソースコレクション周辺のフィールドを暗黙的に表現するアーキテクチャを使って、我々のモデルは代わりに$\mathcal{O}(M + N)$として実行し、$\sim\!
4\%-6\%$で、任意のソース数に対して任意の位置で評価が可能となり、eg物理シミュレーションの速度が大幅に向上した。
また、出力場の物理特性に関するモデルについても検討し、その応用を実証するための2次元例を考案する。
これらのモデルと実験のコードはhttps://github.com/cmt-dtu-energy/hypermagneticsで公開されている。
関連論文リスト
- Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Efficient Graph Field Integrators Meet Point Clouds [59.27295475120132]
点雲を符号化するグラフ上での効率的な場積分のためのアルゴリズムを2種類提案する。
第1のクラスであるSeparatorFactorization(SF)は、ポイントメッシュグラフの有界属を利用するが、第2のクラスであるRFDiffusion(RFD)は、ポイントクラウドの一般的なepsilon-nearest-neighborグラフ表現を使用する。
論文 参考訳(メタデータ) (2023-02-02T08:33:36Z) - Improved machine learning algorithm for predicting ground state
properties [3.156207648146739]
幾何学的局所性を符号化した帰納バイアスを用いて基底状態特性を予測するための古典的機械学習(ML)アルゴリズムを提案する。
提案したMLモデルは,$mathcalO(log(n))$データのみから学習した後に,$n$-qubitの局所ハミルトンの基底状態特性を効率的に予測することができる。
論文 参考訳(メタデータ) (2023-01-30T18:40:07Z) - Heterogenous Ensemble of Models for Molecular Property Prediction [55.91865861896012]
分子の異なるモーダル性を考える手法を提案する。
これらのモデルをHuberRegressorでアンサンブルします。
これにより、OGB Large-Scale Challenge (2022)の2textsuperscriptndエディションの勝利のソリューションが得られる。
論文 参考訳(メタデータ) (2022-11-20T17:25:26Z) - Neural Implicit Manifold Learning for Topology-Aware Density Estimation [15.878635603835063]
現在の生成モデルは、ニューラルネットワークを介して$m$次元の潜在変数をマッピングすることで、$mathcalM$を学ぶ。
我々のモデルは、プッシュフォワードモデルよりも複雑なトポロジーを持つ多様体支持分布を正確に学習できることが示される。
論文 参考訳(メタデータ) (2022-06-22T18:00:00Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Implicit SVD for Graph Representation Learning [33.761179632722]
控えめなハードウェアを持つ人には、グラフ表現学習をより計算的に学習しやすいものにします。
我々はSOTAモデルの線形近似を導出し、入出力を計算せずに$mathbfM$のSVDを介して閉形式でモデルを訓練する。
我々のモデルは、様々なグラフ上での競合実証試験性能を示す。
論文 参考訳(メタデータ) (2021-11-11T16:58:17Z) - FC2T2: The Fast Continuous Convolutional Taylor Transform with
Applications in Vision and Graphics [8.629912408966145]
現代の機械学習の観点から、Taylorシリーズの拡張を再考する。
連続空間における低次元畳み込み作用素の効率的な近似を可能にする高速多重極法(FMM)の変種である高速連続畳み込みテイラー変換(FC2T2)を導入する。
論文 参考訳(メタデータ) (2021-10-29T22:58:42Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
我々は、数値コードをより安価でプロジェクションベースのサロゲートモデルに置き換えている。
このモデルは、数値的な方法で必要となるすべての前の電場を計算することなく、所定の時間で電場を近似することができる。
このモデルでは, シミュレーションパラメータの狭い範囲におけるデータの摂動問題において, 高品質な再構成が示されており, 大規模な入力データに利用することができる。
論文 参考訳(メタデータ) (2021-06-01T08:46:04Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
NISQとフォールトトレラントの両方の設定で格子シュウィンガーモデルをシミュレートするために、スケーラブルで明示的なデジタル量子アルゴリズムを提供する。
格子単位において、結合定数$x-1/2$と電場カットオフ$x-1/2Lambda$を持つ$N/2$物理サイト上のシュウィンガーモデルを求める。
NISQと耐故障性の両方でコストがかかるオブザーバブルを、単純なオブザーバブルとして推定し、平均ペア密度を推定する。
論文 参考訳(メタデータ) (2020-02-25T19:18:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。