論文の概要: XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare
- arxiv url: http://arxiv.org/abs/2405.06270v4
- Date: Fri, 25 Jul 2025 08:24:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.65589
- Title: XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare
- Title(参考訳): XAI4LLM. 医療におけるインコンテキスト学習強化のための機械学習モデルとLLMの連携
- Authors: Fatemeh Nazary, Yashar Deldjoo, Tommaso Di Noia, Eugenio di Sciascio,
- Abstract要約: 本稿では,大規模言語モデルによる構造化された臨床データ処理を実現するための知識誘導型インコンテキスト学習フレームワークを提案する。
このアプローチでは、ドメイン固有の機能グループ化、慎重にバランスのとれた数ショットの例、タスク固有のプロンプト戦略を統合する。
- 参考スコア(独自算出の注目度): 16.79952669254101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical decision support systems require models that are not only highly accurate but also equitable and sensitive to the implications of missed diagnoses. In this study, we introduce a knowledge-guided in-context learning (ICL) framework designed to enable large language models (LLMs) to effectively process structured clinical data. Our approach integrates domain-specific feature groupings, carefully balanced few-shot examples, and task-specific prompting strategies. We systematically evaluate this method across seventy distinct ICL designs by various prompt variations and two different communication styles-natural-language narrative and numeric conversational-and compare its performance to robust classical machine learning (ML) benchmarks on tasks involving heart disease and diabetes prediction. Our findings indicate that while traditional ML models maintain superior performance in balanced precision-recall scenarios, LLMs employing narrative prompts with integrated domain knowledge achieve higher recall and significantly reduce gender bias, effectively narrowing fairness disparities by an order of magnitude. Despite the current limitation of increased inference latency, LLMs provide notable advantages, including the capacity for zero-shot deployment and enhanced equity. This research offers the first comprehensive analysis of ICL design considerations for applying LLMs to tabular clinical tasks and highlights distillation and multimodal extensions as promising directions for future research.
- Abstract(参考訳): 臨床診断支援システムは、高度に正確であるだけでなく、欠落した診断の意味に敏感であるモデルを必要とする。
本研究では,大規模言語モデル(LLM)を用いて,構造化された臨床データを効果的に処理するための知識誘導型インコンテキスト学習(ICL)フレームワークを提案する。
このアプローチでは、ドメイン固有の機能グループ化、慎重にバランスのとれた数ショットの例、タスク固有のプロンプト戦略を統合する。
我々は,この手法を,様々な速やかな変化と2つの異なるコミュニケーションスタイル,自然言語物語と数値会話によって,70種類のICL設計に対して体系的に評価し,その性能を心臓疾患や糖尿病の予測に関わるタスクに関する頑健な古典的機械学習(ML)ベンチマークと比較した。
従来のMLモデルでは,バランスの取れた精度・リコールシナリオでは優れた性能を保っているが,ドメイン知識を融合した物語的プロンプトを用いたLLMは,より高いリコールを実現し,男女差を著しく低減し,公平さの差を桁違いに効果的に狭めることが示唆された。
推論遅延の現在の制限にもかかわらず、LLMはゼロショットデプロイメントの能力やエクイティの強化など、顕著なアドバンテージを提供する。
本研究は,LCMを表型臨床タスクに適用するためのICL設計の総合的考察を行い,将来的な研究の道筋として蒸留とマルチモーダル拡張を強調した。
関連論文リスト
- Are Large Language Models Dynamic Treatment Planners? An In Silico Study from a Prior Knowledge Injection Angle [3.0391297540732545]
インシリコ1型糖尿病シミュレーターにおいて,大型言語モデル (LLM) を動的インスリン投与剤として評価した。
以上の結果より, ゼロショットプロンプトを慎重に設計することで, より小型のLCMが同等あるいは優れた臨床成績を達成できることが示唆された。
LLMは、チェーン・オブ・シンドロームで刺激された時に過度にアグレッシブなインスリン投与など、顕著な制限を呈する。
論文 参考訳(メタデータ) (2025-08-06T13:46:02Z) - Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
本研究は、大規模言語モデル(LLM)用に設計された離散トークン化手法の最初の構造的分類と解析である。
古典的および近代的なパラダイムにまたがる8つの代表的なVQ変種を分類し、アルゴリズムの原理を分析し、力学を訓練し、LLMパイプラインとの統合に挑戦する。
コードブックの崩壊、不安定な勾配推定、モダリティ固有の符号化制約など、重要な課題を特定する。
論文 参考訳(メタデータ) (2025-07-21T10:52:14Z) - Leveraging Embedding Techniques in Multimodal Machine Learning for Mental Illness Assessment [0.8458496687170665]
うつ病やPTSDなどの精神疾患の世界的な流行は、客観的でスケーラブルな診断ツールを必要とする。
本稿では、テキスト、音声、ビデオデータに相補的な情報を活用することで、これらの課題に対処するためのマルチモーダル機械学習の可能性を検討する。
大規模言語モデル予測の新たな統合を含む,データレベル,機能レベル,意思決定レベルの融合技術について検討する。
論文 参考訳(メタデータ) (2025-04-02T14:19:06Z) - LLaVA-RadZ: Can Multimodal Large Language Models Effectively Tackle Zero-shot Radiology Recognition? [30.843971208278006]
マルチモーダル・大型モデル (MLLM) は視覚的理解と推論において例外的な能力を示した。
ゼロショット診断のためのフレームワークであるLLaVA-RadZを提案する。
大規模モデルの本質的な医学的知識を活用するためにドメイン知識集計モジュール(DKAM)を導入する。
論文 参考訳(メタデータ) (2025-03-10T16:05:40Z) - Zero-shot Large Language Models for Long Clinical Text Summarization with Temporal Reasoning [23.34116653190641]
大規模言語モデル(LLM)は、医療におけるデータ処理の変革の可能性を示している。
本研究は、時間的推論を必要とする長期臨床テキストの要約におけるゼロショットLDMの有効性を評価する。
論文 参考訳(メタデータ) (2025-01-30T19:58:45Z) - Enhancing Patient-Centric Communication: Leveraging LLMs to Simulate Patient Perspectives [19.462374723301792]
大きな言語モデル(LLM)はロールプレイングのシナリオにおいて印象的な機能を示している。
人間の行動を模倣することで、LLMは具体的な人口統計や専門的なプロファイルに基づいて反応を予測できる。
多様な背景を持つ個人をシミュレーションする上でのLLMの有効性を評価し,これらのシミュレーション行動の一貫性を解析した。
論文 参考訳(メタデータ) (2025-01-12T22:49:32Z) - Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
本研究では,大規模言語モデル (LLM) を用いて予測モデルの事前分布を推定する手法を提案する。
本研究では,LLMがパラメータ分布を真に生成するかどうかを評価するとともに,文脈内学習と事前推論のためのモデル選択戦略を提案する。
その結果,LLMによる事前パラメータ分布は,低データ設定における非形式的先行よりも予測誤差を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-11-26T10:13:39Z) - Multimodal Clinical Reasoning through Knowledge-augmented Rationale Generation [12.242305026271675]
疾患診断におけるマルチモーダルな合理性生成に最適化されたSLMであるClinRaGenを紹介する。
ClinRaGenは、ドメイン知識と時系列EHRデータを統合するために、ユニークな知識強化された注意メカニズムを組み込んでいる。
以上の結果から,ClinRaGenはマルチモーダルEHRデータを解釈し,正確な臨床的根拠を生成するSLMの能力を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-11-12T07:34:56Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - IntelliCare: Improving Healthcare Analysis with Variance-Controlled Patient-Level Knowledge from Large Language Models [14.709233593021281]
LLM(Large Language Models)からの外部知識の統合は、医療予測を改善するための有望な道を示す。
我々は,LLMを活用して高品質な患者レベルの外部知識を提供する新しいフレームワークであるIntelliCareを提案する。
IntelliCareは患者のコホートを特定し、LCMの理解と生成を促進するためにタスク関連統計情報を利用する。
論文 参考訳(メタデータ) (2024-08-23T13:56:00Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
大規模言語モデルの最後の隠れ状態からベクター表現が医療診断および予後に有効であることを示す。
我々は,異常な生理的データを表すため,ゼロショット設定の命令調整LDMに着目し,それらのユーティリティを特徴抽出器として評価する。
医学MLタスクでは生データの特徴が依然として有効であることが示唆されているが、ゼロショットLSM埋め込みは競争力のある結果を示している。
論文 参考訳(メタデータ) (2024-08-15T03:56:40Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Developing Healthcare Language Model Embedding Spaces [0.20971479389679337]
事前トレーニングされた大規模言語モデル(LLM)は、医療中心のテキストのようなドメイン外のデータセットに苦労することが多い。
従来のマスキング言語モデリング、Deep Contrastive Learning for Unsupervised Textual Representations(DeCLUTR)、およびヘルスケア設定からメタデータカテゴリを利用する新しい事前学習目標の3つの手法が評価されている。
対照的に訓練されたモデルは、分類タスクにおける他のアプローチよりも優れており、限られたラベル付きデータから強力なパフォーマンスを提供し、必要なモデルパラメータの更新を少なくする。
論文 参考訳(メタデータ) (2024-03-28T19:31:32Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Aligning Large Language Models for Clinical Tasks [0.0]
大規模言語モデル(LLM)は目覚ましい適応性を示しており、明示的に訓練されていないタスクに精通する能力を示している。
我々は「Expand-guess-refine」として知られる医療質問応答のためのアライメント戦略を提案する。
この手法の予備的な分析により、USMLEデータセットから得られた質問のサブセットで70.63%のスコアが得られた。
論文 参考訳(メタデータ) (2023-09-06T10:20:06Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - Improving Small Language Models on PubMedQA via Generative Data
Augmentation [4.96649519549027]
大規模言語モデル (LLM) は自然言語処理の分野で顕著な進歩を遂げている。
小型言語モデル(SLM)はその効率で知られているが、限られた能力と訓練データに悩まされることが多い。
医療領域におけるSLMの改善を目的とした,LLMに基づく生成データ拡張を用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-12T23:49:23Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。