論文の概要: Levels of AI Agents: from Rules to Large Language Models
- arxiv url: http://arxiv.org/abs/2405.06643v1
- Date: Wed, 6 Mar 2024 23:02:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 10:40:42.722772
- Title: Levels of AI Agents: from Rules to Large Language Models
- Title(参考訳): AIエージェントのレベル:ルールから大規模言語モデルへ
- Authors: Yu Huang,
- Abstract要約: AIエージェントは、環境を知覚し、決定し、行動を取るための人工エンティティとして定義される。
ルールベースのAIを使用するL1、ルールベースのAIをIL/RLベースのAIに置き換えるL2、推論と意思決定を追加するL3、IL/RLベースのAIの代わりにLLMベースのAIを適用するL3、メモリとリフレクションを設定するL1。
- 参考スコア(独自算出の注目度): 2.505226447399139
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI agents are defined as artificial entities to perceive the environment, make decisions and take actions. Inspired by the 6 levels of autonomous driving by Society of Automotive Engineers, the AI agents are also categorized based on utilities and strongness, as the following levels: L0, no AI, with tools taking into account perception plus actions; L1, using rule-based AI; L2, making rule-based AI replaced by IL/RL-based AI, with additional reasoning & decision making; L3, applying LLM-based AI instead of IL/RL-based AI, additionally setting up memory & reflection; L4, based on L3, facilitating autonomous learning & generalization; L5, based on L4, appending personality of emotion and character and collaborative behavior with multi-agents.
- Abstract(参考訳): AIエージェントは、環境を知覚し、決定し、行動を取るための人工エンティティとして定義される。
ルールベースのAIを使用するL1、ルールベースのAIをIL/RLベースのAIに置き換えるL2、さらなる推論と意思決定を行うL3、IL/RLベースのAIの代わりにLLMベースのAIを適用するL3、メモリとリフレクションを新たに設定するL4、自律的な学習と一般化を促進するL3、L4ベースのL5、感情と性格とマルチエージェントとの協調行動の付加。
関連論文リスト
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Policy Learning with a Language Bottleneck [65.99843627646018]
PLLBB(Policy Learning with a Language Bottleneck)は、AIエージェントが言語規則を生成するためのフレームワークである。
PLLBBは、言語モデルによってガイドされるルール生成ステップと、エージェントがルールによってガイドされる新しいポリシーを学ぶ更新ステップとを交互に使用する。
2人のプレイヤーによるコミュニケーションゲーム、迷路解決タスク、および2つの画像再構成タスクにおいて、PLLBBエージェントはより解釈可能で一般化可能な振る舞いを学習できるだけでなく、学習したルールを人間のユーザと共有できることを示す。
論文 参考訳(メタデータ) (2024-05-07T08:40:21Z) - Brain-inspired and Self-based Artificial Intelligence [23.068338822392544]
機械が人間レベルの知性を達成できるかを評価するチューリングテストは、AIのルーツのひとつです。
この論文は、現在のAIが支援している「思考機械」という概念に挑戦する。
現在の人工知能は、一見知的な情報処理であり、自分自身を真に理解したり、自覚したりしない。
論文 参考訳(メタデータ) (2024-02-29T01:15:17Z) - Applications of Large Scale Foundation Models for Autonomous Driving [22.651585322658686]
大規模言語モデル(LLM)とチャットシステム、例えばチャットGPTやPaLMは、自然言語処理(NLP)において人工知能(AGI)を実現するための有望な方向性として急速に現れつつある。
本稿では、シミュレーション、世界モデル、データアノテーションと計画、E2Eソリューションなどに分類される、自動運転に応用された基礎モデルとLLMの技術について検討する。
論文 参考訳(メタデータ) (2023-11-20T19:45:27Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - Principle-Driven Self-Alignment of Language Models from Scratch with
Minimal Human Supervision [84.31474052176343]
ChatGPTのような最近のAIアシスタントエージェントは、人間のアノテーションと人間のフィードバックからの強化学習を教師付き微調整(SFT)に頼り、アウトプットを人間の意図に合わせる。
この依存は、人間の監督を得るために高いコストがかかるため、AIアシスタントエージェントの真の可能性を大幅に制限することができる。
本稿では,AIエージェントの自己調整と人間監督の最小化のために,原則駆動推論とLLMの生成能力を組み合わせたSELF-ALIGNという新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-04T17:59:28Z) - Confident AI [0.0]
本稿では,人工知能(AI)と機械学習(ML)システムを,モデル予測と報告結果に対するアルゴリズムとユーザ信頼性の両方で設計する手段として,信頼AIを提案する。
Confident AIの4つの基本原則は、反復性、信頼性、十分性、適応性である。
論文 参考訳(メタデータ) (2022-02-12T02:26:46Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。