論文の概要: Hamiltonian and Liouvillian learning in weakly-dissipative quantum many-body systems
- arxiv url: http://arxiv.org/abs/2405.06768v1
- Date: Fri, 10 May 2024 18:41:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 20:05:32.671025
- Title: Hamiltonian and Liouvillian learning in weakly-dissipative quantum many-body systems
- Title(参考訳): 弱散逸型量子多体系におけるハミルトンおよびリウヴィリアン学習
- Authors: Tobias Olsacher, Tristan Kraft, Christian Kokail, Barbara Kraus, Peter Zoller,
- Abstract要約: 我々は、リウィリアンのハミルトニアン作用素とリンドブラッド作用素の作用素内容を学ぶための戦略を示す。
このアプローチの中心的な側面は、パラメータ間の依存関係を導入し、変化させることによって、(再)パラメータ化することです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss Hamiltonian and Liouvillian learning for analog quantum simulation from non-equilibrium quench dynamics in the limit of weakly dissipative many-body systems. We present various strategies to learn the operator content of the Hamiltonian and the Lindblad operators of the Liouvillian. We compare different ans\"atze based on an experimentally accessible "learning error" which we consider as a function of the number of runs of the experiment. Initially, the learning error decreasing with the inverse square root of the number of runs, as the error in the reconstructed parameters is dominated by shot noise. Eventually the learning error remains constant, allowing us to recognize missing ansatz terms. A central aspect of our approach is to (re-)parametrize ans\"atze by introducing and varying the dependencies between parameters. This allows us to identify the relevant parameters of the system, thereby reducing the complexity of the learning task. Importantly, this (re-)parametrization relies solely on classical post-processing, which is compelling given the finite amount of data available from experiments. A distinguishing feature of our approach is the possibility to learn the Hamiltonian, without the necessity of learning the complete Liouvillian, thus further reducing the complexity of the learning task. We illustrate our method with two, experimentally relevant, spin models.
- Abstract(参考訳): 弱散逸多体系の極限における非平衡クエンチ力学からのアナログ量子シミュレーションのハミルトンおよびリウヴィリアン学習について論じる。
我々は、リウィリアンのハミルトニアン作用素とリンドブラッド作用素の作用素内容を学ぶための様々な戦略を示す。
実験の実施回数の関数として考慮した,実験的にアクセス可能な「学習エラー」に基づいて,異なるAns\atzeを比較した。
当初、再構成されたパラメータの誤差はショットノイズに支配されるため、実行回数の逆2乗根で学習誤差が減少する。
最終的に学習エラーは一定であり、欠落したアンサッツ項を認識できる。
このアプローチの中心的な側面は、パラメータ間の依存関係を導入し、変更することによって、(re-)parametrize ans\atzeを(re-)parametrizeすることです。
これにより、システムの関連するパラメータを識別し、学習タスクの複雑さを低減することができる。
重要なことに、この(再)パラメトリゼーションは古典的な後処理にのみ依存しており、実験から得られる限られた量のデータを考えると魅力的である。
我々のアプローチの際立った特徴は、完全なリウヴィリア語を学ぶ必要がなく、ハミルトン語を学ぶ可能性であり、それによって学習タスクの複雑さをさらに減らすことである。
我々は2つの実験的なスピンモデルを用いて本手法を説明する。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Dissipation-enabled bosonic Hamiltonian learning via new
information-propagation bounds [1.0499611180329802]
ボソニックハミルトニアンが簡単な量子実験から効率的に学習できることが示される。
我々の研究は、ボソニック・ハミルトンの幅広いクラスが単純な量子実験から効率的に学習できることを実証している。
論文 参考訳(メタデータ) (2023-07-27T17:35:07Z) - Towards Convergence Rates for Parameter Estimation in Gaussian-gated
Mixture of Experts [40.24720443257405]
ガウスゲートMOEモデルにおける最大推定値(MLE)の収束解析を行う。
以上の結果から,MLEはガウスゲーティング関数の位置パラメータの2つの相補的な設定の下で異なる挙動を示すことが明らかとなった。
特に、これらの挙動は2つの異なる方程式系の可解性によって特徴づけられる。
論文 参考訳(メタデータ) (2023-05-12T16:02:19Z) - Sample-efficient Model-based Reinforcement Learning for Quantum Control [0.2999888908665658]
ノイズの多い時間依存ゲート最適化のためのモデルベース強化学習(RL)手法を提案する。
標準モデルフリーRLに比べて,本手法のサンプル複雑性において,桁違いの優位性を示す。
提案アルゴリズムは,部分的特徴付き1量子ビット系と2量子ビット系の制御に適している。
論文 参考訳(メタデータ) (2023-04-19T15:05:19Z) - Learning Energy Conserving Dynamics Efficiently with Hamiltonian
Gaussian Processes [9.581740983484472]
効率的に分離されたパラメータ化を施したハミルトン系のプロセスモデルを提案する。
本稿では,短軌と長軌の双方から頑健な推論が可能な省エネ射撃法を提案する。
本手法がハミルトニアン系を様々なデータ・セッティングで学習することに成功したことを実証する。
論文 参考訳(メタデータ) (2023-03-03T13:51:04Z) - Learning a Single Neuron with Bias Using Gradient Descent [53.15475693468925]
単一ニューロンをバイアス項で学習する基本的な問題について検討する。
これはバイアスのないケースとは大きく異なり、より難しい問題であることを示す。
論文 参考訳(メタデータ) (2021-06-02T12:09:55Z) - Causal Inference Under Unmeasured Confounding With Negative Controls: A
Minimax Learning Approach [84.29777236590674]
すべての共同設立者が観察されず、代わりに負の制御が利用可能である場合の因果パラメータの推定について検討する。
最近の研究は、2つのいわゆるブリッジ関数による同定と効率的な推定を可能にする方法を示している。
論文 参考訳(メタデータ) (2021-03-25T17:59:19Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Interpolation and Learning with Scale Dependent Kernels [91.41836461193488]
非パラメトリックリッジレス最小二乗の学習特性について検討する。
スケール依存カーネルで定義される推定器の一般的な場合を考える。
論文 参考訳(メタデータ) (2020-06-17T16:43:37Z) - Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery
of Nonlinear Partial Differential Operators from Data [0.0]
データから微分方程式のような物理法則を発見するために機械学習モデルを使うことへの関心が高まっている。
ニューラルネットワークとして機能データを管理することを学習する「リーフモジュール」からなる新しいモデルを提案する。
提案手法は,演算子に対する後続分布の観点から学習物理の信頼性を定量化し,この不確実性を新しい初期有界値問題インスタンスの解に伝達する。
論文 参考訳(メタデータ) (2020-06-07T18:48:43Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。