論文の概要: Large Language Model in Financial Regulatory Interpretation
- arxiv url: http://arxiv.org/abs/2405.06808v1
- Date: Fri, 10 May 2024 20:45:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 19:55:18.253667
- Title: Large Language Model in Financial Regulatory Interpretation
- Title(参考訳): 金融規制解釈における大規模言語モデル
- Authors: Zhiyu Cao, Zachary Feinstein,
- Abstract要約: 本研究では、複雑な金融規制を解釈するための分析ツールとして、LLM(Large Language Models)の革新的利用について検討する。
主な目的は、バーゼルIIIの資本要件規則のような、規制文書の蒸留および複雑化においてLLMを導く効果的なプロンプトを設計することである。
この新たなアプローチは、グローバル金融機関の金融報告・リスクマネジメントシステムにおける規制委任事項の実施を円滑化することを目的としている。
- 参考スコア(独自算出の注目度): 0.276240219662896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the innovative use of Large Language Models (LLMs) as analytical tools for interpreting complex financial regulations. The primary objective is to design effective prompts that guide LLMs in distilling verbose and intricate regulatory texts, such as the Basel III capital requirement regulations, into a concise mathematical framework that can be subsequently translated into actionable code. This novel approach aims to streamline the implementation of regulatory mandates within the financial reporting and risk management systems of global banking institutions. A case study was conducted to assess the performance of various LLMs, demonstrating that GPT-4 outperforms other models in processing and collecting necessary information, as well as executing mathematical calculations. The case study utilized numerical simulations with asset holdings -- including fixed income, equities, currency pairs, and commodities -- to demonstrate how LLMs can effectively implement the Basel III capital adequacy requirements.
- Abstract(参考訳): 本研究では、複雑な金融規制を解釈するための分析ツールとして、LLM(Large Language Models)の革新的利用について検討する。
第一の目的は、動詞を蒸留し、バーゼルIIIの資本要件規則のような複雑な規制文書を、後に実行可能なコードに変換できる簡潔な数学的枠組みに導く効果的なプロンプトを設計することである。
この新たなアプローチは、グローバル金融機関の金融報告・リスクマネジメントシステムにおける規制委任事項の実施を円滑化することを目的としている。
各種LLMの性能評価のためのケーススタディを行い, GPT-4は, 必要な情報処理や収集, 数学的計算の実行において, 他のモデルよりも優れていることを示した。
ケーススタディでは、固定所得、株式、通貨ペア、商品を含む資産保有率の数値シミュレーションを利用して、LLMがバーゼルIIIの資本充実要件をどのように効果的に実施できるかを実証した。
関連論文リスト
- CFinBench: A Comprehensive Chinese Financial Benchmark for Large Language Models [61.324062412648075]
CFinBenchは、中国の文脈下での大規模言語モデル(LLM)の財務知識を評価するための評価ベンチマークである。
この質問は、43の第二級カテゴリーにまたがる99,100の質問で構成されており、3つの質問タイプがある: シングルチョイス、マルチチョイス、そして判断である。
結果は、GPT4といくつかの中国指向モデルがベンチマークをリードし、平均精度は60.16%であることを示している。
論文 参考訳(メタデータ) (2024-07-02T14:34:36Z) - CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications [10.225210627594894]
IJCAI-2024 FinLLMの課題に対して,金融業務の3つの重要な領域におけるLLMの能力について検討した。
金融分類、財務文書要約、単一株式取引について検討する。
提案手法は,これらの多様なタスクを包括的かつ総合的に処理することを目的としており,LLMの多様かつ複雑な財務課題への対処能力の向上と意思決定能力の向上を図っている。
論文 参考訳(メタデータ) (2024-07-02T05:04:13Z) - Financial Knowledge Large Language Model [4.599537455808687]
大規模言語モデル(LLM)の財務知識を評価するための評価ベンチマークであるIDEA-FinBenchを紹介する。
金融分野への一般LLMの迅速な適応を容易にするためのフレームワークであるIDEA-FinKERを提案する。
最後に LLM を利用した財務質問応答システム IDEA-FinQA を提案する。
論文 参考訳(メタデータ) (2024-06-29T08:26:49Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Evaluating LLMs' Mathematical Reasoning in Financial Document Question
Answering [53.56653281752486]
本研究では,大言語モデルによる4つの財務質問応答データセットの数学的推論について検討する。
数理推論のステップの数が増えるにつれて、テーブルの複雑さや性能の変化に対する感度に焦点をあてる。
半構造化文書に適した新しいプロンプト技術を導入する。
論文 参考訳(メタデータ) (2024-02-17T05:10:18Z) - Large Language Model Adaptation for Financial Sentiment Analysis [2.0499240875882]
一般言語モデルは、金融に特化されたタスクでは不足する傾向にある。
1.5B未満のパラメータを持つ2つの基礎モデルは、幅広い戦略を用いて適応されている。
小型LLMは大規模モデルに匹敵する性能を有しつつ,パラメータやデータの観点からも効率がよいことを示す。
論文 参考訳(メタデータ) (2024-01-26T11:04:01Z) - Revolutionizing Finance with LLMs: An Overview of Applications and
Insights [47.11391223936608]
ChatGPTのような大規模言語モデル(LLM)はかなり進歩しており、様々な分野に適用されている。
これらのモデルは、財務報告の自動生成、市場のトレンド予測、投資家の感情分析、パーソナライズされた財務アドバイスの提供に利用されています。
論文 参考訳(メタデータ) (2024-01-22T01:06:17Z) - ChEF: A Comprehensive Evaluation Framework for Standardized Assessment
of Multimodal Large Language Models [49.48109472893714]
MLLM(Multimodal Large Language Models)は、視覚コンテンツと無数の下流タスクとを相互作用する優れた能力を示す。
本稿では,各MLLMを全体プロファイルし,異なるMLLMを比較した最初の総合評価フレームワーク(ChEF)を提案する。
詳細な実装をすべて公開して、さらなる分析と、新しいレシピやモデルを統合するための使い易いモジュラーツールキットを提供します。
論文 参考訳(メタデータ) (2023-11-05T16:01:40Z) - Large Language Models in Finance: A Survey [12.243277149505364]
大規模言語モデル(LLM)は、金融における人工知能応用の新しい可能性を開いた。
大規模言語モデル(LLM)の最近の進歩は、金融における人工知能応用の新しい可能性を開いた。
論文 参考訳(メタデータ) (2023-09-28T06:04:04Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。