論文の概要: Oedipus: LLM-enchanced Reasoning CAPTCHA Solver
- arxiv url: http://arxiv.org/abs/2405.07496v1
- Date: Mon, 13 May 2024 06:32:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 14:44:50.710176
- Title: Oedipus: LLM-enchanced Reasoning CAPTCHA Solver
- Title(参考訳): Oedipus: LLMを改良したCAPTCHAソルバー
- Authors: Gelei Deng, Haoran Ou, Yi Liu, Jie Zhang, Tianwei Zhang, Yang Liu,
- Abstract要約: OedipusはCAPTCHAの自動推論のための革新的なエンドツーエンドフレームワークである。
このフレームワークの中心は、複雑で人間に近いAIタスクを、シンプルでAIに近い一連のステップに分解する、新しい戦略である。
評価の結果,オエディプスはCAPTCHAを効果的に解決し,平均成功率は63.5%であった。
- 参考スコア(独自算出の注目度): 17.074422329618212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: CAPTCHAs have become a ubiquitous tool in safeguarding applications from automated bots. Over time, the arms race between CAPTCHA development and evasion techniques has led to increasingly sophisticated and diverse designs. The latest iteration, reasoning CAPTCHAs, exploits tasks that are intuitively simple for humans but challenging for conventional AI technologies, thereby enhancing security measures. Driven by the evolving AI capabilities, particularly the advancements in Large Language Models (LLMs), we investigate the potential of multimodal LLMs to solve modern reasoning CAPTCHAs. Our empirical analysis reveals that, despite their advanced reasoning capabilities, LLMs struggle to solve these CAPTCHAs effectively. In response, we introduce Oedipus, an innovative end-to-end framework for automated reasoning CAPTCHA solving. Central to this framework is a novel strategy that dissects the complex and human-easy-AI-hard tasks into a sequence of simpler and AI-easy steps. This is achieved through the development of a Domain Specific Language (DSL) for CAPTCHAs that guides LLMs in generating actionable sub-steps for each CAPTCHA challenge. The DSL is customized to ensure that each unit operation is a highly solvable subtask revealed in our previous empirical study. These sub-steps are then tackled sequentially using the Chain-of-Thought (CoT) methodology. Our evaluation shows that Oedipus effectively resolves the studied CAPTCHAs, achieving an average success rate of 63.5\%. Remarkably, it also shows adaptability to the most recent CAPTCHA designs introduced in late 2023, which are not included in our initial study. This prompts a discussion on future strategies for designing reasoning CAPTCHAs that can effectively counter advanced AI solutions.
- Abstract(参考訳): CAPTCHAは、自動化されたボットからアプリケーションを保護するためのユビキタスなツールになっている。
時間が経つにつれ、CAPTCHA開発と回避技術の間の武器競争は、ますます高度で多様な設計へと繋がった。
CAPTCHAを推論する最新のイテレーションでは、人間にとって直感的にシンプルだが、従来のAI技術では難しいタスクを活用し、セキュリティ対策を強化する。
進化するAI能力、特にLarge Language Models(LLMs)の進歩によって駆動される我々は、現代的な推論CAPTCHAを解決するためのマルチモーダルLLMの可能性について検討する。
先進的な推論能力にもかかわらず、LCMはこれらのCAPTCHAを効果的に解くのに苦労している。
Oedipusは、CAPTCHAの自動推論のための革新的なエンドツーエンドフレームワークである。
このフレームワークの中心は、複雑で人間に近いAIタスクを、シンプルでAIに近い一連のステップに分解する、新しい戦略である。
これはCAPTCHAチャレンジ毎に実行可能なサブステップを生成するためにLCMをガイドするCAPTCHA用のドメイン固有言語(DSL)の開発によって実現される。
DSLは、前回の実証研究で明らかになった、各ユニットの操作が高度に解決可能なサブタスクであることを確実にするためにカスタマイズされます。
これらのサブステップは、Chain-of-Thought(CoT)方法論を使って順次取り組まれる。
評価の結果,オエディプスはCAPTCHAを効果的に解決し,平均成功率は63.5\%であることがわかった。
注目すべきは、2023年後半に導入された最新のCAPTCHA設計への適応性である。
これにより、高度なAIソリューションを効果的に対抗できるCAPTCHAを設計するための今後の戦略に関する議論が進められる。
関連論文リスト
- BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
我々は,Bloomの分類にインスパイアされた新しいプロンプト技術であるBloomWiseを導入し,Large Language Models(LLMs)の性能を向上させる。
より洗練された認知スキルを身につける必要性に関する決定は、LLMによる自己評価に基づいている。
4つの一般的な算数推論データセットの広範な実験において,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-05T09:27:52Z) - A Survey of Adversarial CAPTCHAs on its History, Classification and
Generation [69.36242543069123]
本稿では, 逆CAPTCHAの定義を拡張し, 逆CAPTCHAの分類法を提案する。
また, 敵CAPTCHAの防御に使用可能な防御方法も分析し, 敵CAPTCHAに対する潜在的な脅威を示す。
論文 参考訳(メタデータ) (2023-11-22T08:44:58Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees [1.9649272351760065]
本研究では, 深層アンサンブル不確実性を利用して分布外CAPTCHAを検出し, スキップする解法であるEnrを提案する。
我々は,解法の有効性に新たな理論的限界を証明し,その応用を最先端のCAPTCHA解法で実証する。
論文 参考訳(メタデータ) (2023-07-27T20:19:11Z) - AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot
Manipulation [50.737355245505334]
本稿では,ロボット操作タスクにおける高レベル認知能力を学習するための新しいフレームワークを提案する。
得られたデータセットAlphaBlockは、多段階のテキストプランとペア観測による35の包括的なハイレベルタスクで構成されている。
論文 参考訳(メタデータ) (2023-05-30T09:54:20Z) - Vulnerability analysis of captcha using Deep learning [0.0]
本研究ではCAPTCHA生成システムの欠陥と脆弱性について検討する。
これを実現するために、我々は畳み込みニューラルネットワークであるCapNetを開発した。
提案プラットフォームは,数値およびアルファ数値CAPTCHAの両方を評価することができる
論文 参考訳(メタデータ) (2023-02-18T17:45:11Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Robust Text CAPTCHAs Using Adversarial Examples [129.29523847765952]
Robust Text CAPTCHA (RTC) という,ユーザフレンドリーなテキストベースのCAPTCHA生成法を提案する。
第1段階では、前景と背景はランダムにサンプルされたフォントと背景画像で構成される。
第2段階では、CAPTCHAの解法をより妨害するために、高転送可能な逆攻撃をテキストCAPTCHAに適用する。
論文 参考訳(メタデータ) (2021-01-07T11:03:07Z) - Deep-CAPTCHA: a deep learning based CAPTCHA solver for vulnerability
assessment [1.027974860479791]
本研究では,CAPTCHAジェネレータシステムの弱点と脆弱性について検討する。
この目的を達成するために,Deep-CAPTCHAと呼ばれる畳み込みニューラルネットワークを開発した。
我々のネットワークのクラック精度は、数値およびアルファ数値テストデータセットの98.94%と98.31%のハイレートにつながる。
論文 参考訳(メタデータ) (2020-06-15T11:44:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。