Automatic Recognition of Food Ingestion Environment from the AIM-2 Wearable Sensor
- URL: http://arxiv.org/abs/2405.07827v1
- Date: Mon, 13 May 2024 15:12:21 GMT
- Title: Automatic Recognition of Food Ingestion Environment from the AIM-2 Wearable Sensor
- Authors: Yuning Huang, Mohamed Abul Hassan, Jiangpeng He, Janine Higgins, Megan McCrory, Heather Eicher-Miller, Graham Thomas, Edward O Sazonov, Fengqing Maggie Zhu,
- Abstract summary: We propose a neural network-based method with a two-stage training framework that tactfully combines fine-tuning and transfer learning techniques.
Our method is evaluated on a newly collected dataset called UA Free Living Study", which uses an egocentric wearable camera, AIM-2 sensor, to simulate food consumption in free-living conditions.
Experimental results on the collected dataset show that our proposed method for automatic ingestion environment recognition successfully addresses the challenging data imbalance problem in the dataset and achieves a promising overall classification accuracy of 96.63%.
- Score: 3.9956522522260447
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Detecting an ingestion environment is an important aspect of monitoring dietary intake. It provides insightful information for dietary assessment. However, it is a challenging problem where human-based reviewing can be tedious, and algorithm-based review suffers from data imbalance and perceptual aliasing problems. To address these issues, we propose a neural network-based method with a two-stage training framework that tactfully combines fine-tuning and transfer learning techniques. Our method is evaluated on a newly collected dataset called ``UA Free Living Study", which uses an egocentric wearable camera, AIM-2 sensor, to simulate food consumption in free-living conditions. The proposed training framework is applied to common neural network backbones, combined with approaches in the general imbalanced classification field. Experimental results on the collected dataset show that our proposed method for automatic ingestion environment recognition successfully addresses the challenging data imbalance problem in the dataset and achieves a promising overall classification accuracy of 96.63%.
Related papers
- Heterogeneous quantization regularizes spiking neural network activity [0.0]
We present a data-blind neuromorphic signal conditioning strategy whereby analog data are normalized and quantized into spike phase representations.
We extend this mechanism by adding a data-aware calibration step whereby the range and density of the quantization weights adapt to accumulated input statistics.
arXiv Detail & Related papers (2024-09-27T02:25:44Z) - Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
We propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data.
We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry.
Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances.
arXiv Detail & Related papers (2024-03-28T15:41:43Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using
Smartwatches [5.132618393976799]
We aim to design an upper-limb assessment pipeline for stroke patients using smartwatches.
Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale.
arXiv Detail & Related papers (2022-12-09T14:00:49Z) - SFF-DA: Sptialtemporal Feature Fusion for Detecting Anxiety
Nonintrusively [16.170315080992182]
We propose a framework based on "3CNND+LSTM" and fused similarity features of facial behavior and noncontact physiology.
Our framework was validated with dataset from the real world and two public datasets.
arXiv Detail & Related papers (2022-08-12T01:20:51Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating
Behavior Using Smartwatches [8.257740966456172]
This paper presents a complete framework towards the automated i) modeling of in-meal eating behavior and ii) temporal localization of meals.
We present an end-to-end Neural Network which detects food intake events (i.e. bites)
We show how the distribution of the detected bites throughout the day can be used to estimate the start and end points of meals, using signal processing algorithms.
arXiv Detail & Related papers (2020-10-12T12:35:56Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.