論文の概要: Automated classification of multi-parametric body MRI series
- arxiv url: http://arxiv.org/abs/2405.08247v1
- Date: Tue, 14 May 2024 00:39:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 15:17:48.376197
- Title: Automated classification of multi-parametric body MRI series
- Title(参考訳): マルチパラメトリックボディMRIシリーズの自動分類
- Authors: Boah Kim, Tejas Sudharshan Mathai, Kimberly Helm, Ronald M. Summers,
- Abstract要約: 我々は,mpMRI研究において,8種類の異なるシリーズのタイプを分類する自動フレームワークを提案する。
我々は3つのシーメンススキャナーによって取得された1,363個の研究を用いて、5倍のクロスバリデーションを持つDenseNet-121モデルを訓練した。
平均精度は96.6%,感度は96.6%,特異性は99.6%,F1スコアは96.6%であった。
- 参考スコア(独自算出の注目度): 7.039977392090069
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-parametric MRI (mpMRI) studies are widely available in clinical practice for the diagnosis of various diseases. As the volume of mpMRI exams increases yearly, there are concomitant inaccuracies that exist within the DICOM header fields of these exams. This precludes the use of the header information for the arrangement of the different series as part of the radiologist's hanging protocol, and clinician oversight is needed for correction. In this pilot work, we propose an automated framework to classify the type of 8 different series in mpMRI studies. We used 1,363 studies acquired by three Siemens scanners to train a DenseNet-121 model with 5-fold cross-validation. Then, we evaluated the performance of the DenseNet-121 ensemble on a held-out test set of 313 mpMRI studies. Our method achieved an average precision of 96.6%, sensitivity of 96.6%, specificity of 99.6%, and F1 score of 96.6% for the MRI series classification task. To the best of our knowledge, we are the first to develop a method to classify the series type in mpMRI studies acquired at the level of the chest, abdomen, and pelvis. Our method has the capability for robust automation of hanging protocols in modern radiology practice.
- Abstract(参考訳): 多パラメータMRI(Multi-parametric MRI)研究は、様々な疾患の診断のための臨床実践で広く利用されている。
mpMRI検査の量が年々増加するにつれて、これらの試験のDICOMヘッダフィールド内には、共用不正確さが存在する。
これにより、放射線技師のハングプロトコルの一部として、異なるシリーズの配置にヘッダ情報を使用することを防ぎ、修正には臨床医の監視が必要である。
本研究では,mpMRI研究において,8種類の異なるシリーズを分類する自動フレームワークを提案する。
我々は3つのシーメンススキャナーによって取得された1,363個の研究を用いて、5倍のクロスバリデーションを持つDenseNet-121モデルを訓練した。
DenseNet-121アンサンブルの性能を313 mpMRI実験のホールドアウトテストセットで評価した。
平均精度は96.6%,感度は96.6%,特異性は99.6%,F1スコアは96.6%であった。
以上より, 胸部, 腹部, 骨盤のレベルで得られたmpMRI検査において, シリーズタイプを分類する手法を最初に開発した。
本手法は,近代放射線学の実践において,ハングプロトコルの堅牢な自動化を実現する能力を有する。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Automated Classification of Body MRI Sequence Type Using Convolutional
Neural Networks [7.734037486455235]
胸部,腹部,骨盤のレベルで得られた3次元MRIの配列を自動分類する方法を提案する。
われわれは,胸部,腹部,骨盤のMRI画像の3次元分類法を初めて開発した。
論文 参考訳(メタデータ) (2024-02-12T22:34:57Z) - Radiomics Boosts Deep Learning Model for IPMN Classification [3.4659499358648675]
膵管内乳頭粘液性腫瘍 (IPMN) の嚢胞は術前膵管病変であり,膵癌に進展する可能性がある。
本研究では,MRIスキャンからIPMNリスク分類のための新しいコンピュータ支援診断パイプラインを提案する。
論文 参考訳(メタデータ) (2023-09-11T22:41:52Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
我々は,多系列ニューロオンコロジーMRIデータの集約と処理のための人工知能ベースのソリューションを提案する。
エンド・ツー・エンドのフレームワーク i) アンサンブル分類器を用いてMRIの配列を分類し, i) 再現可能な方法でデータを前処理し, iv) 腫瘍組織サブタイプを規定する。
欠落したシーケンスに対して堅牢であり、専門的なループアプローチを採用しており、セグメンテーションの結果は放射線学者によって手動で洗練される可能性がある。
論文 参考訳(メタデータ) (2022-10-06T18:23:42Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - CardiSort: a convolutional neural network for cross vendor automated
sorting of cardiac MR images [2.0791118244420757]
両頭畳み込みニューラルネットワーク("CardiSort")は、画像シーケンスと平面によって35のシーケンスを分類するように訓練された。
単ベンダートレーニング (SVT) とマルチベンダートレーニング (MVT) で高次および平面精度が観察された。
一般的なシーケンスと従来の心臓面の精度は高かった。
論文 参考訳(メタデータ) (2021-09-17T11:42:39Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
脊椎MRIにおける脊椎の発見と同定のための新しい畳み込み法を提案する。
これには学習ベクトル場を使用して、検出された脊椎の角を個別の脊椎にまとめる。
本手法の臨床的有用性を示すために, 腰部, 脊柱管内MRスキャンにおける側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側
論文 参考訳(メタデータ) (2020-07-06T09:37:12Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
19,993症例から36,316巻の胸部CTデータセットを収集,解析した。
自由テキストラジオグラフィーレポートから異常ラベルを自動的に抽出するルールベース手法を開発した。
胸部CTボリュームの多臓器・多臓器分類モデルも開発した。
論文 参考訳(メタデータ) (2020-02-12T00:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。