論文の概要: Deep Reinforcement Learning for Real-Time Ground Delay Program Revision and Corresponding Flight Delay Assignments
- arxiv url: http://arxiv.org/abs/2405.08298v1
- Date: Tue, 14 May 2024 03:48:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 15:08:02.504110
- Title: Deep Reinforcement Learning for Real-Time Ground Delay Program Revision and Corresponding Flight Delay Assignments
- Title(参考訳): 実時間地上遅延計画修正のための深層強化学習と飛行遅延割り当て対応
- Authors: Ke Liu, Fan Hu, Hui Lin, Xi Cheng, Jianan Chen, Jilin Song, Siyuan Feng, Gaofeng Su, Chen Zhu,
- Abstract要約: 地上遅延プログラム(英語: Ground Delay Programs, GDP)は、航空交通管理(ATM)において、空港における容量の調整と不一致の要求に使用される一般的な交通管理イニシアチブである。
動作クローン(BC)と保守的Qラーニング(CQL)という2つのRLモデルを開発した。
これらのモデルは、地上および空中遅延と終端領域の混雑を統合した洗練された報酬関数を利用することで、GDP効率を向上させるように設計されている。
- 参考スコア(独自算出の注目度): 24.09560293826079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the optimization of Ground Delay Programs (GDP), a prevalent Traffic Management Initiative used in Air Traffic Management (ATM) to reconcile capacity and demand discrepancies at airports. Employing Reinforcement Learning (RL) to manage the inherent uncertainties in the national airspace system-such as weather variability, fluctuating flight demands, and airport arrival rates-we developed two RL models: Behavioral Cloning (BC) and Conservative Q-Learning (CQL). These models are designed to enhance GDP efficiency by utilizing a sophisticated reward function that integrates ground and airborne delays and terminal area congestion. We constructed a simulated single-airport environment, SAGDP_ENV, which incorporates real operational data along with predicted uncertainties to facilitate realistic decision-making scenarios. Utilizing the whole year 2019 data from Newark Liberty International Airport (EWR), our models aimed to preemptively set airport program rates. Despite thorough modeling and simulation, initial outcomes indicated that the models struggled to learn effectively, attributed potentially to oversimplified environmental assumptions. This paper discusses the challenges encountered, evaluates the models' performance against actual operational data, and outlines future directions to refine RL applications in ATM.
- Abstract(参考訳): 本稿では,航空交通管理 (ATM) で広く使われている交通管理イニシアチブである地上遅延プログラム (GDP) の最適化について検討する。
気象変動, 飛行要求変動, 空港到着率など, 国家空域における固有の不確実性を管理するために強化学習(RL)を用いて, 行動クローン(BC)と保守的Qラーニング(CQL)という2つのRLモデルを開発した。
これらのモデルは、地上および空中遅延と終端領域の混雑を統合した洗練された報酬関数を利用することで、GDP効率を向上させるように設計されている。
実運用データと予測された不確実性を組み込んで,現実的な意思決定シナリオを促進する,模擬単一空港環境SAGDP_ENVを構築した。
2019年のニューアーク・リバティ国際空港(EWR)のデータを利用して、私たちのモデルは空港の計画レートを事前に設定することを目的としています。
徹底的なモデリングとシミュレーションにもかかわらず、初期の結果は、モデルが効果的に学習するのに苦労したことを示している。
本稿では,実際の運用データに対して発生する課題を論じ,モデルの性能を評価し,ATMにおけるRLアプリケーションの改良に向けた今後の方向性を概説する。
関連論文リスト
- Amelia: A Large Model and Dataset for Airport Surface Movement Forecasting [12.684598713362007]
Amelia-48 は System Wide Information Management (SWIM) Surface Movement Event Service (SMES) を用いて収集された大規模な表面運動データセットである。
Amelia-TFは、292日間にトレーニングされた、トランスフォーマーに基づく大規模マルチエージェントマルチエージェントトラジェクトリ予測モデルである。
未確認の空港では、異なる予測水平線長、エゴエージェント選択戦略、トレーニングレシピを示す実験が実施されている。
論文 参考訳(メタデータ) (2024-07-30T20:50:48Z) - A Graph-based Adversarial Imitation Learning Framework for Reliable & Realtime Fleet Scheduling in Urban Air Mobility [5.19664437943693]
本稿では,艦隊スケジューリング問題の包括的最適化について述べる。
また、代替ソリューションのアプローチの必要性も認識している。
新しい模倣アプローチは、目に見えない最悪のシナリオにおいて、パフォーマンスと顕著な改善を実現する。
論文 参考訳(メタデータ) (2024-07-16T18:51:24Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - Airport take-off and landing optimization through genetic algorithms [55.2480439325792]
本研究は, 航空機の運転における汚染問題に対処し, ゲート割り当てと滑走路スケジューリングを同時に最適化することに焦点を当てた。
本研究は,航空機の離陸・着陸時の燃料燃焼による汚染を最小化するための,革新的な遺伝的アルゴリズムに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-29T14:53:55Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Multi-Agent Based Transfer Learning for Data-Driven Air Traffic
Applications [1.588400000775528]
本稿では、ATMシステムのマルチエージェント特性を完全に考慮し、航空交通管制官の判断を学習する、MA-BERT(Multi-Agent Bidirectional Representations from Transformers)モデルを提案する。
MA-BERTを主要空港からの大規模なデータセットで事前訓練し、それを他の空港や特定の航空交通用途に微調整することで、トレーニング時間を大幅に節約することができる。
論文 参考訳(メタデータ) (2024-01-23T22:21:07Z) - Graph Learning-based Fleet Scheduling for Urban Air Mobility under
Operational Constraints, Varying Demand & Uncertainties [5.248564173595024]
本稿では,電気航空機のスケジュールと目的地のオンライン計画におけるグラフ強化学習手法を提案する。
それは、時間的な需要、垂直離着陸能力、航空機の容量および空域安全ガイドラインに関する制約、離陸遅延、天候によるルート閉鎖、予想外の航空機のダウンタイムに関する不確実性を考える。
論文 参考訳(メタデータ) (2024-01-09T23:46:22Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - FIRE: A Failure-Adaptive Reinforcement Learning Framework for Edge Computing Migrations [52.85536740465277]
FIREは、エッジコンピューティングのディジタルツイン環境でRLポリシーをトレーニングすることで、まれなイベントに適応するフレームワークである。
ImREは重要なサンプリングに基づくQ-ラーニングアルゴリズムであり、希少事象をその値関数への影響に比例してサンプリングする。
FIREは故障時にバニラRLやグリーディベースラインと比較してコストを削減できることを示す。
論文 参考訳(メタデータ) (2022-09-28T19:49:39Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
本稿では,意思決定に直接関連のある表現を学習するための,VCR(Value-Consistent Expression Learning)という新しい手法を提案する。
この想像された状態と環境によって返される実状態とを一致させる代わりに、VCRは両方の状態に$Q$-valueヘッドを適用し、2つのアクション値の分布を得る。
検索不要なRLアルゴリズムに対して,提案手法が新たな最先端性能を実現することが実証された。
論文 参考訳(メタデータ) (2022-06-25T03:02:25Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
本研究では,商業飛行における長期記憶ネットワーク(LSTM)に基づく航空機遅延予測システムを提案する。
このシステムは、自動監視放送(ADS-B)メッセージから歴史的軌跡から学習する。
従来と比べ,大規模なハブ空港ではより堅牢で正確であることが実証された。
論文 参考訳(メタデータ) (2021-03-20T18:37:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。