論文の概要: Neuromorphic Robust Estimation of Nonlinear Dynamical Systems Applied to Satellite Rendezvous
- arxiv url: http://arxiv.org/abs/2405.08392v1
- Date: Tue, 14 May 2024 07:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 14:48:16.165400
- Title: Neuromorphic Robust Estimation of Nonlinear Dynamical Systems Applied to Satellite Rendezvous
- Title(参考訳): 衛星ランデブーに応用した非線形力学系のニューロモルフィックロバスト推定
- Authors: Reza Ahmadvand, Sarah Safura Sharif, Yaser Mike Banad,
- Abstract要約: 本研究では,非線形力学系のロバストフィルタリングに対するニューロモルフィックなアプローチであるSNN-EMSIFを提案する。
SNN-EMSIFは、SNNの計算効率とスケーラビリティをEMSIFの堅牢性と組み合わせている。
その結果,SNN-EMSIFの精度とロバスト性は良好であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State estimation of nonlinear dynamical systems has long aimed to balance accuracy, computational efficiency, robustness, and reliability. The rapid evolution of various industries has amplified the demand for estimation frameworks that satisfy all these factors. This study introduces a neuromorphic approach for robust filtering of nonlinear dynamical systems: SNN-EMSIF (spiking neural network-extended modified sliding innovation filter). SNN-EMSIF combines the computational efficiency and scalability of SNNs with the robustness of EMSIF, an estimation framework designed for nonlinear systems with zero-mean Gaussian noise. Notably, the weight matrices are designed according to the system model, eliminating the need for a learning process. The framework's efficacy is evaluated through comprehensive Monte Carlo simulations, comparing SNN-EMSIF with EKF and EMSIF. Additionally, it is compared with SNN-EKF in the presence of modeling uncertainties and neuron loss, using RMSEs as a metric. The results demonstrate the superior accuracy and robustness of SNN-EMSIF. Further analysis of runtimes and spiking patterns reveals an impressive reduction of 85% in emitted spikes compared to possible spikes, highlighting the computational efficiency of SNN-EMSIF. This framework offers a promising solution for robust estimation in nonlinear dynamical systems, opening new avenues for efficient and reliable estimation in various industries that can benefit from neuromorphic computing.
- Abstract(参考訳): 非線形力学系の状態推定は、精度、計算効率、堅牢性、信頼性のバランスをとることを目的としていた。
様々な産業の急速な発展は、これらの要因をすべて満たす見積もりフレームワークの需要を増大させてきた。
本研究では,非線形力学系のロバストフィルタに対するニューロモルフィックなアプローチとして,SNN-EMSIF(スポーキングニューラルネットワーク拡張改良型スライディング・イノベーション・フィルタ)を提案する。
SNN-EMSIFは、ゼロ平均ガウス雑音を持つ非線形システムのために設計された推定フレームワークであるEMSIFの堅牢性とSNNの計算効率とスケーラビリティを結合する。
特に、重み行列はシステムモデルに従って設計され、学習プロセスの必要性がなくなる。
このフレームワークの有効性は、SNN-EMSIFとEKFとEMSIFを比較した総合的なモンテカルロシミュレーションによって評価される。
さらに、RMSEを指標として、不確実性や神経細胞の損失のモデリングの存在下でSNN-EKFと比較される。
その結果,SNN-EMSIFの精度とロバスト性は良好であった。
ランタイムとスパイクパターンのさらなる分析により、スパイクの可能なスパイクに比べて85%の大幅な削減が示され、SNN-EMSIFの計算効率が強調された。
このフレームワークは、非線形力学系におけるロバストな推定のための有望なソリューションを提供し、ニューロモルフィックコンピューティングの恩恵を受ける様々な産業において、効率的で信頼性の高い推定のための新しい道を開く。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Differentiable Neural-Integrated Meshfree Method for Forward and Inverse Modeling of Finite Strain Hyperelasticity [1.290382979353427]
本研究では,新しい物理インフォームド機械学習手法,特にニューラル積分メッシュフリー(NIM)法を拡張し,有限ひずみ問題をモデル化することを目的とする。
固有の微分可能プログラミング機能のおかげで、NIMは変分形式のニュートン・ラフソン線形化の導出を回避できる。
NIMはひずみデータから超弾性材料の不均一力学特性を同定し, 非線形材料の逆モデリングにおけるその有効性を検証する。
論文 参考訳(メタデータ) (2024-07-15T19:15:18Z) - Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks [0.0]
本稿では,スパイキングニューラルネットワーク(SNN)の堅牢性と計算効率を向上させるための革新的な手法を提案する。
提案手法はヒト脳に広く分布するグリア細胞であるアストロサイトをSNNに統合し、アストロサイトを増強したネットワークを形成する。
特に、アストロサイトを拡張したSNNは、ほぼゼロのレイテンシと理論上無限のスループットを示し、計算効率が極めて高いことを示唆している。
論文 参考訳(メタデータ) (2023-09-15T08:02:29Z) - Enhancing Energy Efficiency and Reliability in Autonomous Systems
Estimation using Neuromorphic Approach [0.0]
本研究ではスパイク符号化理論とスパイクニューラルネットワーク(SNN)に基づく推定フレームワークの導入に焦点をあてる。
本稿では,SNNに基づくKalmanフィルタ(KF)を提案する。
改良型スライディング・イノベーション・フィルタ(MSIF)に基づいて,SNN-MSIFと呼ばれるロバストな戦略を提案する。
論文 参考訳(メタデータ) (2023-07-16T06:47:54Z) - KLIF: An optimized spiking neuron unit for tuning surrogate gradient
slope and membrane potential [0.0]
スパイキングニューラルネットワーク(SNN)は、時間情報を処理する能力によって、多くの注目を集めている。
SNNのための効率的かつ高性能な学習アルゴリズムを開発することは依然として困難である。
我々は,SNNの学習能力を向上させるため,新しいk-based leaky Integrate-and-Fireneurnモデルを提案する。
論文 参考訳(メタデータ) (2023-02-18T05:18:18Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
我々は,Symmetric NMF問題に対するSymNMF-Netと呼ばれるニューラルネットワークを提案する。
各ブロックの推測は最適化の単一イテレーションに対応することを示す。
実世界のデータセットに関する実証的な結果は、我々のSymNMF-Netの優位性を示している。
論文 参考訳(メタデータ) (2022-05-26T08:17:39Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。