A Mixture of Experts (MoE) model to improve AI-based computational pathology prediction performance under variable levels of histopathology image blur
- URL: http://arxiv.org/abs/2405.09298v5
- Date: Fri, 18 Jul 2025 01:10:34 GMT
- Title: A Mixture of Experts (MoE) model to improve AI-based computational pathology prediction performance under variable levels of histopathology image blur
- Authors: Yujie Xiang, Bojing Liu, Mattias Rantalainen,
- Abstract summary: We introduce a mixture of experts (MoE) strategy that combines predictions from multiple expert models trained on data with varying blur levels.<n>Our results show that baseline models' performance consistently decreased with increasing blur.<n>MoE-CNN_CLAM outperformed the baseline CNN_CLAM under moderate and mixed blur conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AI-based models for histopathology whole slide image (WSI) analysis are increasingly common, but unsharp or blurred areas within WSI can significantly reduce prediction performance. In this study, we investigated the effect of image blur on deep learning models and introduced a mixture of experts (MoE) strategy that combines predictions from multiple expert models trained on data with varying blur levels. Using H&E-stained WSIs from 2,093 breast cancer patients, we benchmarked performance on grade classification and IHC biomarker prediction with both CNN- (CNN_CLAM and MoE-CNN_CLAM) and Vision Transformer-based (UNI_CLAM and MoE-UNI_CLAM) models. Our results show that baseline models' performance consistently decreased with increasing blur, but expert models trained on blurred tiles and especially our proposed MoE approach substantially improved performance, and outperformed baseline models in a range of simulated scenarios. MoE-CNN_CLAM outperformed the baseline CNN_CLAM under moderate (AUC: 0.868 vs. 0.702) and mixed blur conditions (AUC: 0.890 vs. 0.875). MoE-UNI_CLAM outperformed the baseline UNI_CLAM model in both moderate (AUC: 0.950 vs. 0.928) and mixed blur conditions (AUC: 0.944 vs. 0.931). This MoE method has the potential to enhance the reliability of AI-based pathology models under variable image quality, supporting broader application in both research and clinical settings.
Related papers
- Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models [58.98742597810023]
Vision models have to behave in a robust way to disturbances such as noise or blur.
This paper studies two datasets of blur corruptions, which we denote OpticsBench and LensCorruptions.
Evaluations for image classification and object detection on ImageNet and MSCOCO show that for a variety of different pre-trained models, the performance on OpticsBench and LensCorruptions varies significantly.
arXiv Detail & Related papers (2025-04-25T17:23:47Z) - Patch-Based and Non-Patch-Based inputs Comparison into Deep Neural Models: Application for the Segmentation of Retinal Diseases on Optical Coherence Tomography Volumes [0.3749861135832073]
Approaching 170 million persons wide-ranging have been spotted with AMD, a figure anticipated to rise to 288 million by 2040.<n>Deep learning networks have shown promising results in both image and pixel-level 2D scan classification.<n>Highest score for a patch-based model in the DSC metric was 0.88 in comparison to the score of 0.71 for the same model in non-patch-based for SRF fluid segmentation.
arXiv Detail & Related papers (2025-01-22T10:22:08Z) - CRTRE: Causal Rule Generation with Target Trial Emulation Framework [47.2836994469923]
We introduce a novel method called causal rule generation with target trial emulation framework (CRTRE)
CRTRE applies randomize trial design principles to estimate the causal effect of association rules.
We then incorporate such association rules for the downstream applications such as prediction of disease onsets.
arXiv Detail & Related papers (2024-11-10T02:40:06Z) - Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.<n>We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.<n>Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Local Manifold Learning for No-Reference Image Quality Assessment [68.9577503732292]
We propose an innovative framework that integrates local manifold learning with contrastive learning for No-Reference Image Quality Assessment (NR-IQA)
Our approach demonstrates a better performance compared to state-of-the-art methods in 7 standard datasets.
arXiv Detail & Related papers (2024-06-27T15:14:23Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - When No-Reference Image Quality Models Meet MAP Estimation in Diffusion Latents [92.45867913876691]
No-reference image quality assessment (NR-IQA) models can effectively quantify perceived image quality.<n>We show that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement.
arXiv Detail & Related papers (2024-03-11T03:35:41Z) - BAGS: Blur Agnostic Gaussian Splatting through Multi-Scale Kernel Modeling [32.493592776662005]
We analyze the robustness of Gaussian-Splatting-based methods against various image blur.
We propose Blur Agnostic Gaussian Splatting (BAGS) to address this issue.
BAGS introduces additional 2D modeling capacities such that a 3D-consistent and high quality scene can be reconstructed despite image-wise blur.
arXiv Detail & Related papers (2024-03-07T22:21:08Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Benchmark Generation Framework with Customizable Distortions for Image
Classifier Robustness [4.339574774938128]
We present a novel framework for generating adversarial benchmarks to evaluate the robustness of image classification models.
Our framework allows users to customize the types of distortions to be optimally applied to images, which helps address the specific distortions relevant to their deployment.
arXiv Detail & Related papers (2023-10-28T07:40:42Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Using Multiple Dermoscopic Photographs of One Lesion Improves Melanoma
Classification via Deep Learning: A Prognostic Diagnostic Accuracy Study [0.0]
This study evaluated the impact of multiple real-world dermoscopic views of a single lesion of interest on a CNN-based melanoma classifier.
Using multiple real-world images is an inexpensive method to positively impact the performance of a CNN-based melanoma classifier.
arXiv Detail & Related papers (2023-06-05T11:55:57Z) - Multiscale Structure Guided Diffusion for Image Deblurring [24.09642909404091]
Diffusion Probabilistic Models (DPMs) have been employed for image deblurring.
We introduce a simple yet effective multiscale structure guidance as an implicit bias.
We demonstrate more robust deblurring results with fewer artifacts on unseen data.
arXiv Detail & Related papers (2022-12-04T10:40:35Z) - Early Diagnosis of Retinal Blood Vessel Damage via Deep Learning-Powered
Collective Intelligence Models [0.3670422696827525]
The power of swarm algorithms is used to search for various combinations of convolutional, pooling, and normalization layers to provide the best model for the task.
The best TDCN model achieves an accuracy of 90.3%, AUC ROC of 0.956, and a Cohen score of 0.967.
arXiv Detail & Related papers (2022-10-17T21:38:38Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
In particular, we train RetinaNet models using different ResNet, VGGNet architectures as backbone.
We propose a preference-based ensemble strategy to combine the output predictions from different models in order to achieve better performance on classification and detection of defects.
arXiv Detail & Related papers (2022-06-20T16:34:11Z) - MC-Blur: A Comprehensive Benchmark for Image Deblurring [127.6301230023318]
In most real-world images, blur is caused by different factors, e.g., motion and defocus.
We construct a new large-scale multi-cause image deblurring dataset (called MC-Blur)
Based on the MC-Blur dataset, we conduct extensive benchmarking studies to compare SOTA methods in different scenarios.
arXiv Detail & Related papers (2021-12-01T02:10:42Z) - Bayesian logistic regression for online recalibration and revision of
risk prediction models with performance guarantees [6.709991492637819]
We introduce two procedures for continual recalibration or revision of an underlying prediction model.
We perform empirical evaluation via simulations and a real-world study predicting COPD risk.
We derive "Type I and II" regret bounds, which guarantee the procedures are non-inferior to a static model and competitive with an oracle logistic reviser.
arXiv Detail & Related papers (2021-10-13T17:03:21Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
Group-based image restoration methods are more effective in gathering the similarity among patches.
For each patch, we find and group the most similar patches within a searching window.
The proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.
arXiv Detail & Related papers (2020-08-09T15:12:16Z) - Deblurring by Realistic Blurring [110.54173799114785]
We propose a new method which combines two GAN models, i.e., a learning-to-blurr GAN (BGAN) and learning-to-DeBlur GAN (DBGAN)
The first model, BGAN, learns how to blur sharp images with unpaired sharp and blurry image sets, and then guides the second model, DBGAN, to learn how to correctly deblur such images.
As an additional contribution, this paper also introduces a Real-World Blurred Image (RWBI) dataset including diverse blurry images.
arXiv Detail & Related papers (2020-04-04T05:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.