論文の概要: Estimating a Function and Its Derivatives Under a Smoothness Condition
- arxiv url: http://arxiv.org/abs/2405.10126v1
- Date: Thu, 16 May 2024 14:24:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 14:02:34.219626
- Title: Estimating a Function and Its Derivatives Under a Smoothness Condition
- Title(参考訳): 滑らかな条件下での関数とその導関数の推定
- Authors: Eunji Lim,
- Abstract要約: 未知関数 f* とその偏微分を n 個の観測結果から推定する問題を考察する。
そのような場合の f* の推定子の自然な候補は、ある滑らかさ条件を満たすデータセットに最も適している。
この2つの推定器は二次プログラムの解として計算可能であることを証明している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider the problem of estimating an unknown function f* and its partial derivatives from a noisy data set of n observations, where we make no assumptions about f* except that it is smooth in the sense that it has square integrable partial derivatives of order m. A natural candidate for the estimator of f* in such a case is the best fit to the data set that satisfies a certain smoothness condition. This estimator can be seen as a least squares estimator subject to an upper bound on some measure of smoothness. Another useful estimator is the one that minimizes the degree of smoothness subject to an upper bound on the average of squared errors. We prove that these two estimators are computable as solutions to quadratic programs, establish the consistency of these estimators and their partial derivatives, and study the convergence rate as n increases to infinity. The effectiveness of the estimators is illustrated numerically in a setting where the value of a stock option and its second derivative are estimated as functions of the underlying stock price.
- Abstract(参考訳): 未知関数 f* とその偏微分を n 個の観測のノイズのあるデータセットから推定する問題を考える。
そのような場合の f* の推定子の自然な候補は、ある滑らかさ条件を満たすデータセットに最も適している。
この推定器は、ある滑らかさの測度上の上界の最小二乗推定器と見なすことができる。
もう一つの有用な推定器は、二乗誤差の平均上界の滑らかさの度合いを最小化するものである。
これらの2つの推定器は二次プログラムの解として計算可能であることを証明し、これらの推定器とその部分微分の整合性を確立し、n が無限大へと増加するにつれて収束速度を研究する。
ストックオプションとその2番目のデリバティブの値を、基礎となる株価の関数として推定する設定において、推定器の有効性を数値的に図示する。
関連論文リスト
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Confidence Sets under Generalized Self-Concordance [2.0305676256390934]
本稿では,非漸近的理論の観点から,統計学の基本的問題を再考する。
非漸近的な方法でその挙動を特徴づける推定器の指数的バウンドを確立する。
その依存性の重要な痕跡は、有効次元によって捉えられる。
論文 参考訳(メタデータ) (2022-12-31T17:45:11Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
観測データに基づいて線形汎関数を推定する問題は、因果推論と包帯文献の両方において標準的である。
このような手順の平均二乗誤差に対して非漸近上界を証明した。
非漸近的局所ミニマックス下限をマッチングすることにより、有限標本のインスタンス依存最適性を確立する。
論文 参考訳(メタデータ) (2022-09-26T23:50:55Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Functional Linear Regression of Cumulative Distribution Functions [20.96177061945288]
本稿では,CDFを至る所で正確に推定する機能リッジ回帰に基づく推定手法を提案する。
固定設計, ランダム設計, 対逆コンテキストの場合の$widetilde O(sqrtd/n)$の推定誤差上限を示す。
パラメータ空間が無限次元ヒルベルト空間である無限次元モデルを定式化し、この設定に対して自己正規化推定誤差上限を確立する。
論文 参考訳(メタデータ) (2022-05-28T23:59:50Z) - Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process
Interpolation [3.8979646385036175]
マタン核の滑らかさは、大きなデータ限界におけるモデルの多くの重要な性質を決定する。
我々は,滑らか度パラメータの最大推定値が真理の下では過小評価できないことを証明した。
最大推定は、コンパクトに支持された自己相似関数のクラスにおける真の滑らかさを回復することを示す。
論文 参考訳(メタデータ) (2022-03-10T14:45:57Z) - On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression
Estimators [4.392844455327199]
非パラメトリック回帰における単純なプラグインカーネルリッジ回帰(KRR)推定器を提案する。
我々は,提案した推定器の挙動を統一的に研究するために,非漸近解析を行う。
提案した推定器は、導関数の任意の順序に対するチューニングパラメータを同じ選択で最適収束率を達成する。
論文 参考訳(メタデータ) (2020-06-02T02:32:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。