Scalarisation-based risk concepts for robust multi-objective optimisation
- URL: http://arxiv.org/abs/2405.10221v2
- Date: Mon, 15 Jul 2024 14:13:13 GMT
- Title: Scalarisation-based risk concepts for robust multi-objective optimisation
- Authors: Ben Tu, Nikolas Kantas, Robert M. Lee, Behrang Shafei,
- Abstract summary: We study the multi-objective case of this problem.
We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation.
As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions.
- Score: 4.12484724941528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective case of this problem. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to account for the uncertainty in the problem. Scalarisation refers to the procedure that is used to encode the relative importance of each objective to a scalar-valued reward. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. The purpose of this work is to give a thorough exposition on the effects of these different orderings and in particular highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our ``robustify and scalarise'' methodology. To illustrate the efficacy of these new ideas, we present two insightful case studies which are based on real-world data sets.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization [9.838618121102053]
In real-world applications, users often favor structurally diverse design choices over one high-quality solution.
This paper presents a fresh perspective on this challenge by considering the problem of identifying a fixed number of solutions with a pairwise distance above a specified threshold.
arXiv Detail & Related papers (2024-08-29T09:55:55Z) - Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - Differentiation of Multi-objective Data-driven Decision Pipeline [34.577809430781144]
Real-world scenarios frequently involve multi-objective data-driven optimization problems.
Traditional two-stage methods apply a machine learning model to estimate problem coefficients, followed by invoking a solver to tackle the predicted optimization problem.
Recent efforts have focused on end-to-end training of predictive models that use decision loss derived from the downstream optimization problem.
arXiv Detail & Related papers (2024-06-02T15:42:03Z) - A Scale-Independent Multi-Objective Reinforcement Learning with
Convergence Analysis [0.6091702876917281]
Many sequential decision-making problems need optimization of different objectives which possibly conflict with each other.
We develop a single-agent scale-independent multi-objective reinforcement learning on the basis of the Advantage Actor-Critic (A2C) algorithm.
A convergence analysis is then done for the devised multi-objective algorithm providing a convergence-in-mean guarantee.
arXiv Detail & Related papers (2023-02-08T16:38:55Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
Uncertainty is a pervasive challenge in decision and risk management.
This paper develops a systematic understanding of such strategies, determine their range of application, and develop a framework to better employ them.
arXiv Detail & Related papers (2023-01-18T19:16:23Z) - Bi-objective Ranking and Selection Using Stochastic Kriging [0.0]
We consider bi-objective ranking and selection problems in which the two objective outcomes have been observed with uncertainty.
We propose a novel Bayesian bi-objective ranking and selection method that sequentially allocates extra samples to competitive solutions.
Experimental results show that the proposed method outperforms the standard allocation method, as well as a well-known state-of-the-art algorithm.
arXiv Detail & Related papers (2022-09-05T23:51:07Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - A general framework for defining and optimizing robustness [74.67016173858497]
We propose a rigorous and flexible framework for defining different types of robustness properties for classifiers.
Our concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy.
We develop a very general robustness framework that is applicable to any type of classification model.
arXiv Detail & Related papers (2020-06-19T13:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.