論文の概要: Smooth Kolmogorov Arnold networks enabling structural knowledge representation
- arxiv url: http://arxiv.org/abs/2405.11318v1
- Date: Sat, 18 May 2024 15:27:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 18:18:48.630868
- Title: Smooth Kolmogorov Arnold networks enabling structural knowledge representation
- Title(参考訳): 構造的知識表現を可能にするスムース・コルモゴロフ・アーノルドネットワーク
- Authors: Moein E. Samadi, Younes Müller, Andreas Schuppert,
- Abstract要約: Kolmogorov-Arnold Networks (KAN) は、従来のマルチ層パーセプトロン(MLP)アーキテクチャに代わる、効率的かつ解釈可能な代替手段を提供する。
固有の構造的知識を活用することで、カンは訓練に必要なデータを減らすことができ、幻覚的予測を発生させるリスクを軽減することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kolmogorov-Arnold Networks (KANs) offer an efficient and interpretable alternative to traditional multi-layer perceptron (MLP) architectures due to their finite network topology. However, according to the results of Kolmogorov and Vitushkin, the representation of generic smooth functions by KAN implementations using analytic functions constrained to a finite number of cutoff points cannot be exact. Hence, the convergence of KAN throughout the training process may be limited. This paper explores the relevance of smoothness in KANs, proposing that smooth, structurally informed KANs can achieve equivalence to MLPs in specific function classes. By leveraging inherent structural knowledge, KANs may reduce the data required for training and mitigate the risk of generating hallucinated predictions, thereby enhancing model reliability and performance in computational biomedicine.
- Abstract(参考訳): Kolmogorov-Arnold Networks (KANs) は、従来のマルチ層パーセプトロン(MLP)アーキテクチャに対して、ネットワークトポロジーが有限であることから、効率的かつ解釈可能な代替手段を提供する。
しかし、コルモゴロフとヴィトゥシキンの結果によれば、有限個のカットオフ点に制限された解析関数を用いたカン実装による一般的な滑らかな関数の表現は正確ではない。
したがって、訓練過程を通しての観の収束は制限される可能性がある。
本稿では, 官能の滑らかさの関連性について考察し, 官能のスムーズな構造的情報により, 特定の関数クラスにおける MLP と等価性が得られることを示唆する。
構造的知識を生かして、カンは学習に必要なデータを削減し、幻覚的予測を発生させるリスクを軽減し、計算生医学におけるモデルの信頼性と性能を向上させることができる。
関連論文リスト
- Suitability of KANs for Computer Vision: A preliminary investigation [28.030708956348864]
Kolmogorov-Arnold Networks (KAN) はニューラルネットワークのパラダイムを導入し、ネットワークの端に学習可能な関数を実装する。
本研究は,画像認識タスクに焦点をあて,視覚モデルにおけるkansの適用性と有効性を評価する。
論文 参考訳(メタデータ) (2024-06-13T13:13:17Z) - Kolmogorov-Arnold Networks (KANs) for Time Series Analysis [6.932243286441558]
本稿では,KAN(Kolmogorov-Arnold Networks)の時系列予測への応用について紹介する。
コルモゴロフ・アルノルドの表現定理に着想を得たカンスは、伝統的な線型重みをスプラインパラメタライズされた単変数関数に置き換えた。
実世界の衛星トラフィック予測タスクにおいて,KANSAが従来のMLP(Multi-Layer Perceptrons)よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-14T17:38:17Z) - Chebyshev Polynomial-Based Kolmogorov-Arnold Networks: An Efficient Architecture for Nonlinear Function Approximation [0.0]
本稿では,Chebyshev Kolmogorov-Arnoldの定理に触発された新しいニューラルネットワークアーキテクチャであるChebyshev Kolmogorov-Arnold Networkについて述べる。
ネットワークのエッジ上でChebyshevによってパラメータ化された学習可能な関数を利用することで、Chebyshev Kansは関数近似タスクの柔軟性、効率、解釈性を向上させる。
論文 参考訳(メタデータ) (2024-05-12T07:55:43Z) - Layer-wise Feedback Propagation [53.00944147633484]
本稿では、ニューラルネットワークのような予測器のための新しいトレーニング手法であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決に対するそれぞれの貢献に基づいて、個々のコネクションに報酬を割り当てる。
各種モデルやデータセットの勾配降下に匹敵する性能を達成できることの有効性を実証する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Nonparametric Classification on Low Dimensional Manifolds using
Overparameterized Convolutional Residual Networks [82.03459331544737]
非パラメトリック分類の観点から重量減衰を訓練したConvResNeXtsの性能について検討した。
我々の分析は、ConvResNeXtsにおいて無限に多くのビルディングブロックを許容し、重み減衰がこれらのブロックに空間性を暗黙的に強制することを示す。
論文 参考訳(メタデータ) (2023-07-04T11:08:03Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
論文 参考訳(メタデータ) (2022-06-01T12:02:38Z) - Random Graph-Based Neuromorphic Learning with a Layer-Weaken Structure [4.477401614534202]
我々は,ランダムグラフ理論を実践的な意味でNNモデルに変換し,各ニューロンの入出力関係を明らかにする。
この低演算コストアプローチでは、ニューロンはいくつかのグループに割り当てられ、接続関係はそれらに属するランダムグラフの一様表現とみなすことができる。
本稿では,複数のRGNN間の情報インタラクションを含む共同分類機構を開発し,教師付き学習における3つのベンチマークタスクの大幅な性能向上を実現する。
論文 参考訳(メタデータ) (2021-11-17T03:37:06Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
本稿では,最先端の結果を生み出すスパイクニューラルネットワークのアンサンブルを構築する方法について述べる。
MNIST, NMNIST, DVS Gestureデータセットの分類精度は98.71%, 100.0%, 99.09%である。
我々は、スパイキングニューラルネットワークをGLM予測器として形式化し、ターゲットドメインに適した表現を識別する。
論文 参考訳(メタデータ) (2020-10-15T17:45:18Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
ニューラルネットワークアーキテクチャの制約に基づく表現について検討する。
本稿では,いわゆるアーキテクチャ制約を満たすのに適した簡単な最適化手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T16:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。