Investigating KAN-Based Physics-Informed Neural Networks for EMI/EMC Simulations
- URL: http://arxiv.org/abs/2405.11383v2
- Date: Tue, 21 May 2024 11:00:13 GMT
- Title: Investigating KAN-Based Physics-Informed Neural Networks for EMI/EMC Simulations
- Authors: Kun Qian, Mohamed Kheir,
- Abstract summary: It introduces some common EM problem formulations and how they can be solved using AI-driven solutions.
This research may open new horizons for green EMI simulation with less energy consumption and feasible computational capacity.
- Score: 3.2005061268752746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The main objective of this paper is to investigate the feasibility of employing Physics-Informed Neural Networks (PINNs) techniques, in particular KolmogorovArnold Networks (KANs), for facilitating Electromagnetic Interference (EMI) simulations. It introduces some common EM problem formulations and how they can be solved using AI-driven solutions instead of lengthy and complex full-wave numerical simulations. This research may open new horizons for green EMI simulation workflows with less energy consumption and feasible computational capacity.
Related papers
- Physics aware machine learning for micromagnetic energy minimization: recent algorithmic developments [0.0]
Building on Brown's bounds for magnetostatic self-energy, we revisit their application in the context of variational formulations of the transmission problems.
We reformulate these bounds on a finite domain, making the method more efficient and scalable for numerical simulation.
Results highlight the potential of mesh-free Physics-Informed Neural Networks (PINNs) and Extreme Learning Machines (ELMs) when integrated with hard constraints.
arXiv Detail & Related papers (2024-09-19T16:22:40Z) - NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements [7.704598780320887]
This study introduces NeuroSEM, a hybrid framework integrating PINNs with the high-fidelity Spectral Element Method (SEM) solver, Nektar++.
NeuroSEM leverages the strengths of both PINNs and SEM, providing robust solutions for multiphysics problems.
We demonstrate the efficiency and accuracy of NeuroSEM for thermal convection in cavity flow and flow past a cylinder.
arXiv Detail & Related papers (2024-07-30T22:01:14Z) - Quantum Neural Networks for Solving Power System Transient Simulation Problem [0.0]
We introduce two novel Quantum Neural Networks (QNNs), proposing them as effective alternatives to conventional simulation techniques.
Our application of these QNNs successfully simulates two small power systems, demonstrating their potential to achieve good accuracy.
This research marks a pioneering effort in applying quantum computing to power system simulations but also expands the potential of quantum technologies in addressing intricate engineering challenges.
arXiv Detail & Related papers (2024-05-19T02:18:04Z) - Physics-informed generative neural networks for RF propagation prediction with application to indoor body perception [2.679900758407988]
The paper discusses a Variational Auto-Encoder (VAE) model which is trained to reproduce the effects of human motions on the EM field.
Proposed physics-informed generative neural network models are verified against both classical diffraction-based EM tools and full-wave EM body simulations.
arXiv Detail & Related papers (2024-05-03T14:35:02Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Quantum Algorithms for Simulating Nuclear Effective Field Theories [40.83664249192338]
We use state-of-the-art Hamiltonian-simulation methods to estimate the qubit and gate costs to simulate low-energy effective field theories (EFTs) of nuclear physics.
We demonstrate how symmetries of the low-energy nuclear Hamiltonians can be utilized to obtain tighter error bounds on the simulation algorithm.
arXiv Detail & Related papers (2023-12-08T20:09:28Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - PARC: Physics-Aware Recurrent Convolutional Neural Networks to
Assimilate Meso-scale Reactive Mechanics of Energetic Materials [0.0]
We present the Physics-Aware Recurrent Convolutional (PARC) Neural Network, a deep-learning algorithm capable of learning the mesoscale thermo-mechanics of shock-initiated energetic materials (EM)
We demonstrate that visualizing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an additional lens for conceptualizing EM.
arXiv Detail & Related papers (2022-04-04T14:29:35Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features [42.96944345045462]
textscOrbNet is shown to outperform existing methods in terms of learning efficiency and transferability.
For applications to datasets of drug-like molecules, textscOrbNet predicts energies within chemical accuracy of DFT at a computational cost that is thousand-fold or more reduced.
arXiv Detail & Related papers (2020-07-15T22:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.