論文の概要: Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling
- arxiv url: http://arxiv.org/abs/2405.13796v1
- Date: Wed, 22 May 2024 16:21:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:15:30.223597
- Title: Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling
- Title(参考訳): 物理AIハイブリッドモデリングによる天気予報の微粒化
- Authors: Wanghan Xu, Fenghua Ling, Wenlong Zhang, Tao Han, Hao Chen, Wanli Ouyang, Lei Bai,
- Abstract要約: 本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
- 参考スコア(独自算出の注目度): 55.13352174687475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven artificial intelligence (AI) models have made significant advancements in weather forecasting, particularly in medium-range and nowcasting. However, most data-driven weather forecasting models are black-box systems that focus on learning data mapping rather than fine-grained physical evolution in the time dimension. Consequently, the limitations in the temporal scale of datasets prevent these models from forecasting at finer time scales. This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales beyond training dataset. Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale (e.g., 300 seconds) and use a parallel neural networks with a learnable router for bias correction. Furthermore, we introduce a lead time-aware training framework to promote the generalization of the model at different lead times. The weight analysis of physics-AI modules indicates that physics conducts major evolution while AI performs corrections adaptively. Extensive experiments show that WeatherGFT trained on an hourly dataset, achieves state-of-the-art performance across multiple lead times and exhibits the capability to generalize 30-minute forecasts.
- Abstract(参考訳): データ駆動人工知能(AI)モデルは、特に中距離や近距離での天気予報において大きな進歩を遂げている。
しかし、ほとんどのデータ駆動の天気予報モデルは、時間次元の微細な物理的進化ではなく、データマッピングの学習に焦点を当てたブラックボックスシステムである。
その結果、データセットの時間スケールの制限により、これらのモデルはより詳細な時間スケールでの予測を妨げている。
本稿では,天気予報をトレーニングデータセットを超える細粒度テンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケール(例えば300秒)で物理進化をシミュレートするために慎重に設計されたPDEカーネルを使用し、学習可能なルータと並列ニューラルネットワークを用いてバイアス補正を行う。
さらに、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
物理AIモジュールの重み解析は、物理学が大きな進化をし、AIが適応的に修正を行うことを示している。
大規模な実験により、WeatherGFTは時間単位のデータセットでトレーニングされ、複数のリードタイムで最先端のパフォーマンスを達成し、30分間の予測を一般化する能力を示している。
関連論文リスト
- Mitigating Time Discretization Challenges with WeatherODE: A Sandwich Physics-Driven Neural ODE for Weather Forecasting [20.135470301151727]
天気予報精度を向上させるために,新しい物理駆動型常微分方程式(ODE)モデルを提案する。
波動方程式理論の活用と時間依存ソースモデルの統合により、気象学は時分割誤差や動的大気過程に関連する課題を効果的に解決する。
気象予報は, 気象予報と地域気象予報の双方において優れた性能を示し, 近年の最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-09T05:41:24Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は,気象予測に対する物理学的アプローチとAI的アプローチの相対的強みと弱みについて述べる。
GEM予測された大規模状態変数をGraphCast予測に対してスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
その結果,このハイブリッド手法は,GEMモデルの予測能力を高めるために,GraphCastの強みを活用できることが示唆された。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - BeamVQ: Aligning Space-Time Forecasting Model via Self-training on Physics-aware Metrics [18.67368024029461]
本研究では、ベクトル量子化(BeamVQ)によるemphBeam探索を提案し、データ駆動時空予測モデルの物理的アライメントを強化する。
BeamVQは、物理を意識したメトリクスでフィルタリングされた自己生成サンプルのモデルを訓練する。
実験によると、BeamVQは5つのデータセットで10のバックボーンに対して平均的な統計スキルスコアを32%以上向上させただけでなく、物理学を意識したメトリクスを大幅に強化した。
論文 参考訳(メタデータ) (2024-05-27T11:07:47Z) - STC-ViT: Spatio Temporal Continuous Vision Transformer for Weather Forecasting [0.0]
天気予報のための時空間連続トランスフォーマービジョンであるSTC-ViTを提案する。
STC-ViTは、連続した天気変化を時間とともに学習するために、マルチヘッドアテンション機構を備えた連続時間ニューラルODE層を組み込んでいる。
STC-ViTは,操作型数値天気予報(NWP)モデルと,深層学習に基づく天気予報モデルとを比較した。
論文 参考訳(メタデータ) (2024-02-28T01:15:30Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
実世界のプロセスの相関は時間的であり、それらによって生成されたデータは空間的および時間的進化の両方を示す。
時系列モデルが数値予測の代替となる。
本研究では,分解時間予測モデルにより計算コストを低減し,精度を向上することを示した。
論文 参考訳(メタデータ) (2022-09-29T13:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。