Parametrically controlled chiral interface for superconducting quantum devices
- URL: http://arxiv.org/abs/2405.15086v1
- Date: Thu, 23 May 2024 22:15:40 GMT
- Title: Parametrically controlled chiral interface for superconducting quantum devices
- Authors: Xi Cao, Abdullah Irfan, Michael Mollenhauer, Kaushik Singirikonda, Wolfgang Pfaff,
- Abstract summary: We report the design and experimental realization of a controllable directional interface that may be integrated directly with superconducting qubits.
We have achieved a maximum directionality of around 30,dB, and the performance of the device is predicted quantitatively from independent calibration measurements.
Our work provides a route toward isolator-free qubit readout schemes and high-fidelity entanglement generation in all-to-all connected networks of superconducting quantum devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonreciprocal microwave routing plays a crucial role for measuring quantum circuits, and allows for realizing cascaded quantum systems for generating and stabilizing entanglement between non-interacting qubits. The most commonly used tools for implementing directionality are ferrite-based circulators. These devices are versatile, but suffer from excess loss, a large footprint, and fixed directionality. For utilizing nonreciprocity in scalable quantum circuits it is desirable to develop efficient integration of low-loss and in-situ controllable directional elements. Here, we report the design and experimental realization of a controllable directional interface that may be integrated directly with superconducting qubits. In the presented device, nonreciprocity is realized through a combination of interference and phase-controlled parametric pumping. We have achieved a maximum directionality of around 30\,dB, and the performance of the device is predicted quantitatively from independent calibration measurements. Using the excellent agreement of model and experiment, we predict that the circuit will be useable as a chiral qubit interface with inefficiencies at the one-percent level or below. Our work provides a route toward isolator-free qubit readout schemes and high-fidelity entanglement generation in all-to-all connected networks of superconducting quantum devices.
Related papers
- Hybrid optomechanical superconducting qubit system [0.0]
We propose an integrated nonlinear superconducting device based on a nanoelectromechanical shuttle.
The proposed setup represents an important step towards the implementation of bosonic error correction with mechanical elements in large-scale superconducting circuits.
arXiv Detail & Related papers (2024-02-28T13:23:02Z) - Multiplexed control scheme for scalable quantum information processing
with superconducting qubits [6.939978118889927]
Superconducting qubits, traditionally controlled through individual circuitry, currently face a formidable scalability challenge.
Here we introduce a multiplexed control scheme that efficiently utilizes shared control lines for operating multiple qubits and couplers.
This scheme has the potential to diminish the number of control lines by one to two orders of magnitude in the near future.
arXiv Detail & Related papers (2023-12-12T00:42:12Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Circuit connectivity boosts by quantum-classical-quantum interfaces [0.4194295877935867]
High-connectivity circuits are a major roadblock for current quantum hardware.
We propose a hybrid classical-quantum algorithm to simulate such circuits without swap-gate ladders.
We numerically show the efficacy of our method for a Bell-state circuit for two increasingly distant qubits.
arXiv Detail & Related papers (2022-03-09T19:00:02Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Long-range connectivity in a superconducting quantum processor using a
ring resonator [0.0]
We introduce a novel superconducting architecture that uses a ring resonator as a multi-path coupling element with the qubits uniformly distributed throughout its circumference.
We theoretically analyse the qubit connectivity and experimentally verify it in a device capable of supporting up to twelve qubits where each qubit can be connected to nine other qubits.
arXiv Detail & Related papers (2020-12-17T09:34:14Z) - Efficient and Low-Backaction Quantum Measurement Using a Chip-Scale
Detector [6.986401053690062]
Superconducting qubits are a leading platform for scalable quantum computing and quantum error correction.
This work constitutes a high-quality platform for the scalable measurement of superconducting qubits.
arXiv Detail & Related papers (2020-08-09T20:05:29Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.