論文の概要: DisC-GS: Discontinuity-aware Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2405.15196v1
- Date: Fri, 24 May 2024 03:58:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 18:09:00.241440
- Title: DisC-GS: Discontinuity-aware Gaussian Splatting
- Title(参考訳): DisC-GS: 連続性を意識したガウススティング
- Authors: Haoxuan Qu, Zhuoling Li, Hossein Rahmani, Yujun Cai, Jun Liu,
- Abstract要約: 本稿では,ガウススプラッティングが不連続認識画像レンダリングを実現するための新しいフレームワークを提案する。
また,B'ezier-boundary approximation(B'ezier-boundary approximation,B'ezier-boundary approximation,B'ezier-boundary approximation,B'ezier-boundary approximation,B'ezier-boundary approximation)という手法を導入する。
- 参考スコア(独自算出の注目度): 22.468666418657303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Gaussian Splatting, a method that represents a 3D scene as a collection of Gaussian distributions, has gained significant attention in addressing the task of novel view synthesis. In this paper, we highlight a fundamental limitation of Gaussian Splatting: its inability to accurately render discontinuities and boundaries in images due to the continuous nature of Gaussian distributions. To address this issue, we propose a novel framework enabling Gaussian Splatting to perform discontinuity-aware image rendering. Additionally, we introduce a B\'ezier-boundary gradient approximation strategy within our framework to keep the ``differentiability'' of the proposed discontinuity-aware rendering process. Extensive experiments demonstrate the efficacy of our framework.
- Abstract(参考訳): 近年,3次元シーンをガウス分布の集合として表現する手法であるガウススプラッティングが,新規な視点合成の課題に対処する上で大きな注目を集めている。
本稿では,ガウス分布の連続性に起因する画像の不連続性と境界を正確にレンダリングできないという,ガウススプラッティングの基本的な限界を強調する。
この問題に対処するために,ガウシアン・スプラッティングが不連続認識画像のレンダリングを行うことを可能にする新しいフレームワークを提案する。
さらに,提案した不連続性を考慮したレンダリングプロセスの ' `differentiability'' を維持するため,B\'ezier-boundary gradient approximation をフレームワーク内に導入する。
大規模な実験により、我々のフレームワークの有効性が実証された。
関連論文リスト
- Gaussian-Forest: Hierarchical-Hybrid 3D Gaussian Splatting for Compressed Scene Modeling [20.705053444057835]
本稿では,ハイブリッド3Dガウスの森として景観を階層的に表現するガウス・フォレスト・モデリング・フレームワークを紹介する。
実験により、ガウス・フォレストは同等の速度と品質を維持するだけでなく、圧縮速度が10倍を超えることが示されている。
論文 参考訳(メタデータ) (2024-06-13T02:41:11Z) - AbsGS: Recovering Fine Details for 3D Gaussian Splatting [10.458776364195796]
3D Gaussian Splatting (3D-GS) 技術は3Dプリミティブを相違可能なガウス化と組み合わせて高品質な新規ビュー結果を得る。
しかし、3D-GSは、高頻度の詳細を含む複雑なシーンで過度に再構成の問題に悩まされ、ぼやけた描画画像に繋がる。
本稿では,前述の人工物,すなわち勾配衝突の原因を包括的に分析する。
我々の戦略は過度に再構成された地域のガウス人を効果的に同定し、分割して細部を復元する。
論文 参考訳(メタデータ) (2024-04-16T11:44:12Z) - 3D Gaussian Splatting as Markov Chain Monte Carlo [30.04096439325343]
3D Gaussian Splattingは最近、ニューラルレンダリングで人気になっている。
我々は3次元ガウスの集合を、基礎となる確率分布から引き出されたランダムなサンプルとして再考する。
未使用ガウスの除去を促進する正則化器を導入する。
論文 参考訳(メタデータ) (2024-04-15T09:01:47Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering [42.91830228828405]
本稿では,処理オーバーヘッドを最小限に抑えた新しい階層化手法を提案する。
提案手法はガウス版よりも平均で4%遅い。
レンダリング性能はほぼ2倍に向上し,従来のガウス版よりも1.6倍高速になった。
論文 参考訳(メタデータ) (2024-02-01T11:46:44Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
光ガウシアン(LightGaussian)は、3次元ガウシアンをより効率的でコンパクトなフォーマットに変換する新しい方法である。
ネットワーク・プルーニング(Network Pruning)の概念からインスピレーションを得たLightGaussianは、シーンの再構築に貢献するに足りていないガウシアンを特定する。
本稿では,全ての属性を量子化するハイブリッド方式であるVecTree Quantizationを提案する。
論文 参考訳(メタデータ) (2023-11-28T21:39:20Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion
Probabilistic Models with Structured Noise [0.0]
本稿では,ガウススプラッティングに基づく3次元コンテンツ生成フレームワークについて紹介する。
我々は3次元ガウススプラッティングによって生成された摂動画像にマルチビューノイズ分布を用いる。
我々の知る限り,本手法は3次元コンテンツ生成プロセスの全領域にわたるガウススプラッティングの包括的利用が初めてである。
論文 参考訳(メタデータ) (2023-11-19T04:26:16Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Learning to Estimate Hidden Motions with Global Motion Aggregation [71.12650817490318]
閉塞は、局所的な証拠に依存する光学フローアルゴリズムに重大な課題をもたらす。
最初の画像でピクセル間の長距離依存性を見つけるために,グローバルモーションアグリゲーションモジュールを導入する。
遮蔽領域における光流量推定が非遮蔽領域における性能を損なうことなく大幅に改善できることを実証した。
論文 参考訳(メタデータ) (2021-04-06T10:32:03Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
我々は,ゼロオーダーのオラクルにのみアクセス可能なブラックボックス設定において,逆例を生成する問題について検討する。
我々はこの設定を用いて、FGSM(Fast Gradient Sign Method)のブラックボックス版と同様に、高速な1ステップの敵攻撃を見つける。
提案手法はクエリを少なくし,現在の技術よりも攻撃成功率が高いことを示す。
論文 参考訳(メタデータ) (2020-10-08T18:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。