論文の概要: Biometrics and Behavior Analysis for Detecting Distractions in e-Learning
- arxiv url: http://arxiv.org/abs/2405.15434v2
- Date: Mon, 22 Jul 2024 09:37:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 01:21:37.967147
- Title: Biometrics and Behavior Analysis for Detecting Distractions in e-Learning
- Title(参考訳): eラーニングにおけるディトラクション検出のためのバイオメトリックスと行動解析
- Authors: Álvaro Becerra, Javier Irigoyen, Roberto Daza, Ruth Cobos, Aythami Morales, Julian Fierrez, Mutlu Cukurova,
- Abstract要約: 本稿では,eラーニングセッション中に異常な頭部ポーズを検出するコンピュータビジョンアプローチについて検討する。
本稿では,学習者のセッションで観測された平均値から頭部姿勢の偏差を検出するためのアプローチを提案する。
- 参考スコア(独自算出の注目度): 12.49745170391342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, we explore computer vision approaches to detect abnormal head pose during e-learning sessions and we introduce a study on the effects of mobile phone usage during these sessions. We utilize behavioral data collected from 120 learners monitored while participating in a MOOC learning sessions. Our study focuses on the influence of phone-usage events on behavior and physiological responses, specifically attention, heart rate, and meditation, before, during, and after phone usage. Additionally, we propose an approach for estimating head pose events using images taken by the webcam during the MOOC learning sessions to detect phone-usage events. Our hypothesis suggests that head posture undergoes significant changes when learners interact with a mobile phone, contrasting with the typical behavior seen when learners face a computer during e-learning sessions. We propose an approach designed to detect deviations in head posture from the average observed during a learner's session, operating as a semi-supervised method. This system flags events indicating alterations in head posture for subsequent human review and selection of mobile phone usage occurrences with a sensitivity over 90%.
- Abstract(参考訳): 本稿では,eラーニングセッション中の異常な頭部ポーズを検出するコンピュータビジョンアプローチについて検討し,これらのセッションにおける携帯電話の利用状況について検討する。
我々はMOOC学習セッションに参加している120人の学習者から収集した行動データを利用する。
本研究は,電話使用前後の行動,生理的反応,特に注意,心拍数,想想などに及ぼす電話使用事象の影響に焦点を当てた。
また、MOOC学習セッション中にウェブカメラが撮影した画像を用いて、頭部ポーズイベントを推定し、電話使用イベントを検出する手法を提案する。
本仮説は,eラーニングセッション中に学習者がコンピュータと対面する典型的な行動と対照的に,学習者が携帯電話と対話するときの頭部姿勢に大きな変化が生じることを示唆している。
本研究では,学習者のセッション中に観測された平均値から頭部姿勢の偏差を検出するための手法を提案する。
このシステムは、その後の人間のレビューと携帯電話の使用状況の選択のための頭部姿勢の変化を示すイベントを90%以上の感度でフラグ付けする。
関連論文リスト
- Auto Detecting Cognitive Events Using Machine Learning on Pupillary Data [0.0]
瞳孔の大きさは認知作業負荷の貴重な指標であり、自律神経系によって支配される注意の変化と覚醒を反映している。
本研究では、機械学習を用いて個人が経験した認知イベントを自動的に検出する可能性について検討する。
論文 参考訳(メタデータ) (2024-10-18T04:54:46Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
我々はBrain-Computer Interface技術を用いてユーザの好みを推測し、その注意力は視覚的コンテンツと感情的体験との関連性に相関する。
我々はこれらを,情報検索,生成モデルのパーソナライズされたステアリング,感情経験のクラウドソーシング人口推定など,関連するアプリケーションにリンクする。
論文 参考訳(メタデータ) (2024-05-15T20:41:46Z) - Improving automatic detection of driver fatigue and distraction using
machine learning [0.0]
運転者の疲労と注意をそらした運転は交通事故の重要な要因である。
本稿では,視覚に基づくアプローチと機械学習に基づくアプローチを用いて,疲労と注意をそらした運転行動の同時検出手法を提案する。
論文 参考訳(メタデータ) (2024-01-04T06:33:46Z) - Assessing cognitive function among older adults using machine learning and wearable device data: a feasibility study [3.0872517448897465]
健常成人と認知不良高齢者を区別する予測モデルを開発した。
活動と睡眠パラメータは、他の認知流速と比較して、処理速度、作業記憶、注意に強く関連していた。
論文 参考訳(メタデータ) (2023-08-28T00:07:55Z) - Rare Life Event Detection via Mobile Sensing Using Multi-Task Learning [1.0995444037562332]
希少な生命現象はメンタルヘルスに大きな影響を与え、行動研究におけるその検出は、健康に基づく介入への重要なステップである。
我々は,これらの異常を検出するために,モバイルセンシングデータを使用することを想定する。
本稿では,センサデータを用いて,生活事象と人間の行動のグランガー因果関係について検討する。
論文 参考訳(メタデータ) (2023-05-31T17:29:24Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
機能的脳活動から直接人間の視覚的注意を特徴付ける脳誘発対人視覚注意ネットワーク(BI-AVAN)を提案する。
本モデルは,人間の脳が監督されていない方法で焦点を絞った映画フレーム内の視覚的物体を識別・発見するために,注意関連・無視対象間の偏りのある競合過程を模倣する。
論文 参考訳(メタデータ) (2022-10-27T22:20:36Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
精神状態は、先進医療に共通する国でも診断されていない。
人間の行動を監視するための有望なデータソースのひとつは、日々のスマートフォンの利用だ。
本研究では,自殺行動のリスクが高い青少年集団の移動行動のデータセットを用いて,日常生活の行動マーカーについて検討した。
論文 参考訳(メタデータ) (2021-06-24T17:46:03Z) - Onfocus Detection: Identifying Individual-Camera Eye Contact from
Unconstrained Images [81.64699115587167]
Onfocus Detectionは、カメラが捉えた個人の焦点がカメラにあるかどうかを特定することを目的としている。
OnFocus Detection In the Wild (OFDIW) と呼ばれる大規模なオンフォーカス検出データセットを構築しました。
本研究では,視線干渉推論ネットワーク (ECIIN) を用いた眼球深度検出モデルを提案する。
論文 参考訳(メタデータ) (2021-03-29T03:29:09Z) - What Can You Learn from Your Muscles? Learning Visual Representation
from Human Interactions [50.435861435121915]
視覚のみの表現よりも優れた表現を学べるかどうかを調べるために,人間のインタラクションとアテンション・キューを用いている。
実験の結果,我々の「音楽監督型」表現は,視覚のみの最先端手法であるMoCoよりも優れていた。
論文 参考訳(メタデータ) (2020-10-16T17:46:53Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。