論文の概要: GSDeformer: Direct Cage-based Deformation for 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2405.15491v1
- Date: Fri, 24 May 2024 12:16:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:32:33.203026
- Title: GSDeformer: Direct Cage-based Deformation for 3D Gaussian Splatting
- Title(参考訳): GSDeformer:3次元ガウススプレイティングのための直接ケージベース変形
- Authors: Jiajun Huang, Hongchuan Yu,
- Abstract要約: 本手法は,3次元ガウススティング(2DGS)における自由変形を,構造的変化を伴わずに達成する。
我々は、3DGSを新しいプロキシポイントクラウド表現に変換する。そこでは、3DGSを構成する3Dガウスに変換を推論するためにその変形を利用することができる。
提案手法は3DGSの基盤となるアーキテクチャを変更するものではない。
- 参考スコア(独自算出の注目度): 3.8859983281943116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present GSDeformer, a method that achieves free-form deformation on 3D Gaussian Splatting(3DGS) without requiring any architectural changes. Our method extends cage-based deformation, a traditional mesh deformation method, to 3DGS. This is done by converting 3DGS into a novel proxy point cloud representation, where its deformation can be used to infer the transformations to apply on the 3D gaussians making up 3DGS. We also propose an automatic cage construction algorithm for 3DGS to minimize manual work. Our method does not modify the underlying architecture of 3DGS. Therefore, any existing trained vanilla 3DGS can be easily edited by our method. We compare the deformation capability of our method against other existing methods, demonstrating the ease of use and comparable quality of our method, despite being more direct and thus easier to integrate with other concurrent developments on 3DGS.
- Abstract(参考訳): 本稿では,3次元ガウススティング(3DGS)における自由変形を実現する手法であるGSDeformerについて述べる。
本手法は,従来のメッシュ変形法であるケージベースの変形を3DGSに拡張する。
これは、3DGSを新しいプロキシポイントクラウド表現に変換することで実現され、3DGSを構成する3Dガウスに変換を適用するためにその変形を推測することができる。
また,手作業の最小化を目的とした3DGSの自動ケージ構築アルゴリズムを提案する。
提案手法は3DGSの基盤となるアーキテクチャを変更するものではない。
したがって,既存のバニラ3DGSは容易に編集できる。
提案手法の変形性能を他の既存手法と比較し,3DGS上での他の並列開発と統合し易く,より直接的でありながら,使用の容易さと同等の品質を実証した。
関連論文リスト
- 3D Gaussian Editing with A Single Image [19.662680524312027]
本稿では,3次元ガウシアンスプラッティングをベースとしたワンイメージ駆動の3Dシーン編集手法を提案する。
提案手法は,ユーザが指定した視点から描画した画像の編集版に合わせるために,3次元ガウスを最適化することを学ぶ。
実験により, 幾何学的詳細処理, 長距離変形, 非剛性変形処理における本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-14T13:17:42Z) - WildGaussians: 3D Gaussian Splatting in the Wild [80.5209105383932]
3DGSによる閉塞や外見の変化に対処する新しいアプローチであるWildGaussiansを紹介した。
我々はWildGaussianが3DGSとNeRFのベースラインを越えながら3DGSのリアルタイムレンダリング速度と一致していることを示す。
論文 参考訳(メタデータ) (2024-07-11T12:41:32Z) - Mani-GS: Gaussian Splatting Manipulation with Triangular Mesh [44.57625460339714]
本稿では,3DGSを直接自己適応で操作する三角形メッシュを提案する。
提案手法は,高忠実度レンダリングを維持しつつ,大きな変形,局所的な操作,軟体シミュレーションを処理可能である。
論文 参考訳(メタデータ) (2024-05-28T04:13:21Z) - DOGS: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction Via Gaussian Consensus [56.45194233357833]
3DGSを分散訓練するDoGaussianを提案する。
大規模シーンで評価すると,3DGSのトレーニングを6回以上高速化する。
論文 参考訳(メタデータ) (2024-05-22T19:17:58Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis [49.352765055181436]
動的ビュー合成のための3次元幾何学的変形可能なガウススメッティング法を提案する。
提案手法は,動的ビュー合成と3次元動的再構成を改良した3次元形状認識変形モデリングを実現する。
論文 参考訳(メタデータ) (2024-04-09T12:47:30Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.80822249039235]
3Dガウススプラッティングは、新しいビュー合成のための代替の3D表現として登場した。
SAGDは3D-GSのための概念的にシンプルで効果的な境界拡張パイプラインである。
提案手法は粗い境界問題なく高品質な3Dセグメンテーションを実現し,他のシーン編集作業にも容易に適用できる。
論文 参考訳(メタデータ) (2024-01-31T14:19:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。