論文の概要: F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2405.17083v1
- Date: Mon, 27 May 2024 11:55:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 15:32:42.547365
- Title: F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting
- Title(参考訳): F-3DGS:3次元ガウス平滑化のための因子座標と表現
- Authors: Xiangyu Sun, Joo Chan Lee, Daniel Rho, Jong Hwan Ko, Usman Ali, Eunbyung Park,
- Abstract要約: ニューラルレイディアンス場(NeRF)のレンダリング手法の代替として,F3DGS(Facterized 3D Gaussian Splatting)を提案する。
F-3DGSはレンダリング画像に匹敵する品質を維持しながら、ストレージコストを大幅に削減する。
- 参考スコア(独自算出の注目度): 13.653629893660218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The neural radiance field (NeRF) has made significant strides in representing 3D scenes and synthesizing novel views. Despite its advancements, the high computational costs of NeRF have posed challenges for its deployment in resource-constrained environments and real-time applications. As an alternative to NeRF-like neural rendering methods, 3D Gaussian Splatting (3DGS) offers rapid rendering speeds while maintaining excellent image quality. However, as it represents objects and scenes using a myriad of Gaussians, it requires substantial storage to achieve high-quality representation. To mitigate the storage overhead, we propose Factorized 3D Gaussian Splatting (F-3DGS), a novel approach that drastically reduces storage requirements while preserving image quality. Inspired by classical matrix and tensor factorization techniques, our method represents and approximates dense clusters of Gaussians with significantly fewer Gaussians through efficient factorization. We aim to efficiently represent dense 3D Gaussians by approximating them with a limited amount of information for each axis and their combinations. This method allows us to encode a substantially large number of Gaussians along with their essential attributes -- such as color, scale, and rotation -- necessary for rendering using a relatively small number of elements. Extensive experimental results demonstrate that F-3DGS achieves a significant reduction in storage costs while maintaining comparable quality in rendered images.
- Abstract(参考訳): 神経放射野(NeRF)は3次元シーンを表現し,新規な視点を合成する上で大きな進歩を遂げている。
その進歩にもかかわらず、NeRFの計算コストが高いため、リソース制約のある環境やリアルタイムアプリケーションへの展開が困難になっている。
NeRFライクなニューラルレンダリングの代替として、3D Gaussian Splatting (3DGS)は高速なレンダリング速度を提供し、優れた画質を維持している。
しかし、無数のガウシアンを用いて物や場面を表現するため、高品質な表現を実現するにはかなりの記憶を必要とする。
ストレージのオーバーヘッドを軽減するため,F3DGS(Factized 3D Gaussian Splatting)を提案する。
古典行列およびテンソル因子化法に着想を得た本手法は, ガウスの高密度クラスタを効率な因数分解によって表現し, 近似する。
我々は,各軸とそれらの組み合わせについて,限られた量の情報で近似することで,高密度な3次元ガウスを効率的に表現することを目指している。
この方法では、比較的少数の要素をレンダリングするのに必要な、色、スケール、回転といった重要な属性とともに、かなり多くのガウスを符号化することができる。
F-3DGSはレンダリング画像に匹敵する品質を維持しつつ,ストレージコストを大幅に削減できることを示した。
関連論文リスト
- PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本稿では,現在のアプローチよりも優れた空間感性プルーニングスコアを提案する。
また,事前学習した任意の3D-GSモデルに適用可能なマルチラウンドプルーファインパイプラインを提案する。
我々のパイプラインは、3D-GSの平均レンダリング速度を2.65$times$で増加させ、より健全なフォアグラウンド情報を保持します。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - Adversarial Generation of Hierarchical Gaussians for 3D Generative Model [20.833116566243408]
本稿では,Gaussianを3D GANの3次元表現として利用し,その効率的かつ明示的な特徴を活用する。
生成したガウスの位置とスケールを効果的に正規化する階層的多スケールガウス表現を持つジェネレータアーキテクチャを導入する。
実験結果から,最先端の3D一貫したGANと比較して,レンダリング速度(x100)が大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-06-05T05:52:20Z) - EfficientGS: Streamlining Gaussian Splatting for Large-Scale High-Resolution Scene Representation [29.334665494061113]
能率GS」は3DGSを高解像度で大規模なシーンに最適化する高度なアプローチである。
3DGSの密度化過程を解析し,ガウスの過剰増殖領域を同定した。
本稿では,ガウス的増加を重要な冗長プリミティブに制限し,表現効率を向上する選択的戦略を提案する。
論文 参考訳(メタデータ) (2024-04-19T10:32:30Z) - Gaussian Opacity Fields: Efficient and Compact Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質でコンパクトな表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting [58.95801720309658]
本稿では,3次元ガウス散乱(3DGS),すなわち3DGSRを用いた暗黙的表面再構成法を提案する。
重要な洞察は、暗黙の符号付き距離場(SDF)を3Dガウスに組み込んで、それらが整列され、共同最適化されるようにすることである。
実験により, 3DGSの効率とレンダリング品質を保ちながら, 高品質な3D表面再構成が可能な3DGSR法が実証された。
論文 参考訳(メタデータ) (2024-03-30T16:35:38Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering
of 3D Gaussian Splatting [2.878831747437321]
3D-GSは、速度と画質の両方においてニューラル放射場(NeRF)を上回った新しいレンダリングアプローチである。
本研究では,現在のビューをレンダリングするために,不要な3次元ガウスをリアルタイムに識別する計算量削減手法を提案する。
Mip-NeRF360データセットの場合、提案手法は2次元画像投影の前に平均して3次元ガウスの63%を排除し、ピーク信号対雑音比(PSNR)を犠牲にすることなく全体のレンダリングを約38.3%削減する。
提案されたアクセラレータは、GPUと比較して10.7倍のスピードアップも達成している。
論文 参考訳(メタデータ) (2024-02-21T14:16:49Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
光ガウシアン(LightGaussian)は、3次元ガウシアンをより効率的でコンパクトなフォーマットに変換する新しい方法である。
ネットワーク・プルーニング(Network Pruning)の概念からインスピレーションを得たLightGaussianは、シーンの再構築に貢献するに足りていないガウシアンを特定する。
本稿では,全ての属性を量子化するハイブリッド方式であるVecTree Quantizationを提案する。
論文 参考訳(メタデータ) (2023-11-28T21:39:20Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
本研究では,3次元ガウス点数を削減するための学習可能なマスク戦略を提案する。
また、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2023-11-22T20:31:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。