論文の概要: Towards One Model for Classical Dimensionality Reduction: A Probabilistic Perspective on UMAP and t-SNE
- arxiv url: http://arxiv.org/abs/2405.17412v1
- Date: Mon, 27 May 2024 17:57:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 14:04:26.428457
- Title: Towards One Model for Classical Dimensionality Reduction: A Probabilistic Perspective on UMAP and t-SNE
- Title(参考訳): 古典的次元化の一モデルに向けて:UMAPとt-SNEの確率論的視点
- Authors: Aditya Ravuri, Neil D. Lawrence,
- Abstract要約: 本稿では,ProbDR で導入された一般化 Wishart モデルに対応する MAP 推論手法として,次元削減手法である UMAP と t-SNE を概ね再キャスト可能であることを示す。
この解釈はこれらのアルゴリズムについてより深い理論的洞察を与え、類似の次元減少法を研究できるツールを導入している。
- 参考スコア(独自算出の注目度): 8.121681696358717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper shows that the dimensionality reduction methods, UMAP and t-SNE, can be approximately recast as MAP inference methods corresponding to a generalized Wishart-based model introduced in ProbDR. This interpretation offers deeper theoretical insights into these algorithms, while introducing tools with which similar dimensionality reduction methods can be studied.
- Abstract(参考訳): 本稿では,ProbDR で導入された一般化 Wishart モデルに対応する MAP 推論手法として,次元削減手法である UMAP と t-SNE を概ね再キャスト可能であることを示す。
この解釈はこれらのアルゴリズムについてより深い理論的洞察を与え、類似の次元減少法を研究できるツールを導入している。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - Modelled Multivariate Overlap: A method for measuring vowel merger [0.0]
本稿では,母音重複の定量化手法を提案する。
英語の4方言におけるPIN-PEN統合をターゲットとしたコーパス音声データの評価を行った。
論文 参考訳(メタデータ) (2024-06-24T04:56:26Z) - Improving Probabilistic Diffusion Models With Optimal Diagonal Covariance Matching [27.2761325416843]
本稿では,最近提案された共分散モーメントマッチング手法を活用し,対角的共分散を学習するための新しい手法を提案する。
提案手法は, 一般的な拡散モデルのサンプリング効率, リコール率, 可能性を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-16T05:47:12Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - Evaluating the Robustness of Interpretability Methods through
Explanation Invariance and Equivariance [72.50214227616728]
解釈可能性法は、それらの説明が説明されたモデルを忠実に記述した場合にのみ有用である。
特定の対称性群の下で予測が不変であるニューラルネットワークを考える。
論文 参考訳(メタデータ) (2023-04-13T17:59:03Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Sparse Cholesky covariance parametrization for recovering latent
structure in ordered data [1.5349431582672617]
共分散行列のコレスキー因子における任意の零パターンに着目する。
そこで本研究では,行列損失のペナル化に基づく新しい推定手法を提案する。
実験結果に基づいて、各設定にどの方法がより適切か分析する。
論文 参考訳(メタデータ) (2020-06-02T08:35:00Z) - Fitting Laplacian Regularized Stratified Gaussian Models [0.0]
データから複数の関連するゼロ平均ガウス分布を共同推定する問題を考察する。
本稿では,大規模な問題にスケールする分散手法を提案するとともに,金融,レーダ信号処理,天気予報などの手法の有効性について述べる。
論文 参考訳(メタデータ) (2020-05-04T18:00:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。