論文の概要: Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification
- arxiv url: http://arxiv.org/abs/2405.19363v1
- Date: Fri, 24 May 2024 16:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 19:45:41.412410
- Title: Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification
- Title(参考訳): Medformer:医療時系列分類のためのマルチグラニュラリティパッチ変換器
- Authors: Yihe Wang, Nan Huang, Taida Li, Yujun Yan, Xiang Zhang,
- Abstract要約: 医用時系列分類に特化した多粒度パッチ変換器であるMedformerを紹介する。
本手法は,医療時系列の特徴を生かした3つの新しいメカニズムを取り入れたものである。
- 参考スコア(独自算出の注目度): 6.0233642055651115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical time series data, such as Electroencephalography (EEG) and Electrocardiography (ECG), play a crucial role in healthcare, such as diagnosing brain and heart diseases. Existing methods for medical time series classification primarily rely on handcrafted biomarkers extraction and CNN-based models, with limited exploration of transformers tailored for medical time series. In this paper, we introduce Medformer, a multi-granularity patching transformer tailored specifically for medical time series classification. Our method incorporates three novel mechanisms to leverage the unique characteristics of medical time series: cross-channel patching to leverage inter-channel correlations, multi-granularity embedding for capturing features at different scales, and two-stage (intra- and inter-granularity) multi-granularity self-attention for learning features and correlations within and among granularities. We conduct extensive experiments on five public datasets under both subject-dependent and challenging subject-independent setups. Results demonstrate Medformer's superiority over 10 baselines, achieving top averaged ranking across five datasets on all six evaluation metrics. These findings underscore the significant impact of our method on healthcare applications, such as diagnosing Myocardial Infarction, Alzheimer's, and Parkinson's disease. We release the source code at \url{https://github.com/DL4mHealth/Medformer}.
- Abstract(参考訳): 脳波(EEG)や心電図(ECG)などの医療時系列データは、脳や心臓疾患の診断などの医療において重要な役割を果たす。
既存の医療時系列分類法は主に手作りバイオマーカー抽出とCNNベースのモデルに依存しており、医療時系列に適合するトランスフォーマーの探索は限られている。
本稿では,医療時系列分類に適した多粒度パッチ変換器であるMedformerを紹介する。
医療時系列の特徴を活用するための3つの新しいメカニズムが組み込まれている: チャネル間相関を利用するクロスチャネルパッチ、異なるスケールで特徴を捉えるマルチグラニュラリティ埋め込み、および2段階(イントラグラニュラリティおよびインターグラニュラリティ)のマルチグラニュラリティ自己アテンション、および粒度内および粒度間の相関を学習するためのマルチグラニュラリティ自己アテンションである。
我々は、主題に依存しない5つの公開データセットに対して、課題に依存しないセットアップと課題に依存しないセットアップの両方で広範な実験を行う。
結果は、Medformerが10のベースラインよりも優れていることを示し、6つの評価指標で5つのデータセットで上位にランク付けされた。
これらの結果は, 心筋梗塞, アルツハイマー病, パーキンソン病の診断など, 医療応用における本手法の意義を浮き彫りにしている。
ソースコードは \url{https://github.com/DL4mHealth/Medformer} で公開しています。
関連論文リスト
- FedMedICL: Towards Holistic Evaluation of Distribution Shifts in Federated Medical Imaging [68.6715007665896]
FedMedICLは統合されたフレームワークであり、フェデレートされた医療画像の課題を全体評価するためのベンチマークである。
6種類の医用画像データセットについて,いくつかの一般的な手法を総合的に評価した。
単純なバッチ分散手法はFedMedICL実験全体の平均性能において,高度な手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-07-11T19:12:23Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - Global Contrastive Training for Multimodal Electronic Health Records with Language Supervision [1.6245786035158123]
本稿では,医療時系列と臨床ノートに着目した,新しいマルチモーダルコントラスト学習フレームワークを提案する。
このフレームワークは、時間的クロスアテンション変換器と動的埋め込みおよびトークン化スキームを統合し、マルチモーダルな特徴表現を学習する。
実世界のERHデータセットを用いて実験したところ, 術後合併症9例の発症予測において, 我々のフレームワークは最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-04-10T04:19:59Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
EHRの値と測定値に画像処理を条件付け,臨床画像と表層データを融合させるハイパーネットワークに基づく新しいフレームワークを提案する。
我々は, 単一モダリティモデルと最先端MRI-タブラルデータ融合法の両方に優れることを示す。
論文 参考訳(メタデータ) (2024-03-20T05:50:04Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Heterogeneous Graph Learning for Multi-modal Medical Data Analysis [6.3082663934391014]
マルチモーダル医療データを融合するために,HetMedというグラフベースの効果的なフレームワークを提案する。
HetMedは、患者間の複雑な関係を体系的に捉え、より正確な臨床判断をもたらす。
論文 参考訳(メタデータ) (2022-11-28T09:14:36Z) - Improving Medical Predictions by Irregular Multimodal Electronic Health
Records Modeling [19.346610191591143]
集中治療室(ICU)患者の健康状態は電子健康記録(EHR)によって監視される
単一モードごとに不規則に対処し、医療予測を改善するためにマルチモーダル表現に統合することは難しい問題である。
本手法はまず,手作りのインプット埋め込みをゲーティング機構を用いて学習した埋め込みに動的に組み込むことにより,各モードの不規則性に対処する。
我々は, 時系列, 臨床ノート, マルチモーダル融合におけるF1の6.5%, 3.6%, 4.3%の相対的な改善を観察した。
論文 参考訳(メタデータ) (2022-10-18T20:29:26Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。